Solveeit Logo

Question

Mathematics Question on inequalities

If x satisfies 3x2+3x4+3x612| 3 x - 2 | + | 3x - 4 | + | 3x - 6 | \ge 12, then

A

0x830 \le x \ge \frac{8}{3}

B

x83x \ge \frac{8}{3} or 43\frac{-4}{3}

C

x0 x \le 0 or x83x \ge \frac{8}{3}

D

x2x \ge 2 only

Answer

x0 x \le 0 or x83x \ge \frac{8}{3}

Explanation

Solution

Dividing RR at 23,43\frac{2}{3}, \frac{4}{3} and 22, analyses 44 cases.
When x23x \leq \frac{2}{3}, the inequality becomes
23x+43x+63x122-3 x+4-3 x+6-3 x \geq 12.
implying 9x0x0-9 x \geq 0 \Rightarrow x \leq 0.
when x2x \ge 2 the ineqality becomes
3x2+3x4+3x6123 x-2+3 x-4+3 x-6 \geq 12
Implying 9x24x8/39 x \geq 24 \Rightarrow x \geq 8 / 3
The inequality in invalid in the other two sections.
\therefore either x0x \leq 0 or x8/3x \geq 8 / 3