Solveeit Logo

Question

Question: If x = r sinA cosC, y= r sinA sinC and z = r cosA , then prove that \({{r}^{2}}={{x}^{2}}+{{y}^{2}}+...

If x = r sinA cosC, y= r sinA sinC and z = r cosA , then prove that r2=x2+y2+z2{{r}^{2}}={{x}^{2}}+{{y}^{2}}+{{z}^{2}}.

Explanation

Solution

Evaluate the sum x2+y2{{x}^{2}}+{{y}^{2}} first. Then add it to z2{{z}^{2}} to get the result. Use the trigonometric identity sin2A+cos2A=1{{\sin }^{2}}A+{{\cos }^{2}}A=1.

Complete step-by-step answer:

We have x = r sinA cosC

Squaring both sides, we get

x2=(rsinAcosC)2{{x}^{2}}={{(r\sin A\cos C)}^{2}}

We know that (ab)m=ambm{{\left( ab \right)}^{m}}={{a}^{m}}{{b}^{m}}

Using the above formula, we get

x2=r2sin2Acos2C (i){{x}^{2}}={{r}^{2}}{{\sin }^{2}}A{{\cos }^{2}}C\text{ (i)}

y= r sinA sinC

Squaring both sides, we get

y2=(rsinAsinC)2{{y}^{2}}={{\left( r\sin A\sin C \right)}^{2}}

We know that (ab)m=ambm{{\left( ab \right)}^{m}}={{a}^{m}}{{b}^{m}}

Using the above formula, we get

y2=r2sin2Asin2C (ii){{y}^{2}}={{r}^{2}}{{\sin }^{2}}A{{\sin }^{2}}C\text{ (ii)}

Adding equation (i) and equation (ii), we get

x2+y2=r2sin2Acos2C+r2sin2Asin2C{{x}^{2}}+{{y}^{2}}={{r}^{2}}{{\sin }^{2}}A{{\cos }^{2}}C+{{r}^{2}}{{\sin }^{2}}A{{\sin }^{2}}C

Taking r2sin2A{{r}^{2}}{{\sin }^{2}}A common, we get

x2+y2=r2sin2A(cos2C+sin2C){{x}^{2}}+{{y}^{2}}={{r}^{2}}{{\sin }^{2}}A\left( {{\cos }^{2}}C+{{\sin }^{2}}C \right)

We know that sin2A+cos2A=1{{\sin }^{2}}A+{{\cos }^{2}}A=1.

Using the above formula, we get

x2+y2=r2sin2A(1){{x}^{2}}+{{y}^{2}}={{r}^{2}}{{\sin }^{2}}A\left( 1 \right)

x2+y2=r2sin2A (iii) \Rightarrow {{x}^{2}}+{{y}^{2}}={{r}^{2}}{{\sin }^{2}}A\text{ (iii)} \\\

Also, we know have z = r cosA

Squaring both sides, we get

z2=(rcosA)2{{z}^{2}}={{\left( r\cos A \right)}^{2}}

We know that (ab)m=ambm{{\left( ab \right)}^{m}}={{a}^{m}}{{b}^{m}}

Using the above formula, we get

z2=r2cos2A (iv){{z}^{2}}={{r}^{2}}{{\cos }^{2}}A\text{ (iv)}

Adding equation (iii) and equation (iv), we get

x2+y2+z2=r2sin2A+r2cos2A{{x}^{2}}+{{y}^{2}}+{{z}^{2}}={{r}^{2}}{{\sin }^{2}}A+{{r}^{2}}{{\cos }^{2}}A

Taking r2{{r}^{2}} common in RHS, we get

x2+y2+z2=r2(sin2A+cos2A){{x}^{2}}+{{y}^{2}}+{{z}^{2}}={{r}^{2}}\left( {{\sin }^{2}}A+{{\cos }^{2}}A \right)

We know that sin2A+cos2A=1{{\sin }^{2}}A+{{\cos }^{2}}A=1.

Using the above formula, we get

x2+y2+z2=r2(1){{x}^{2}}+{{y}^{2}}+{{z}^{2}}={{r}^{2}}\left( 1 \right)

x2+y2+z2=r2\Rightarrow {{x}^{2}}+{{y}^{2}}+{{z}^{2}}={{r}^{2}}

Hence proved.

Note: [1] If v\overset{\to }{\mathop{v}}\, is any vector in 3D-space of magnitude r making an angle C with z-axis, and projection of the vector v in x-y plane making an angle A with x-axis, then we have v=rsinAcosCi^+rsinAsinCj^+rcosAk^=xi^+yj^+zk^\overrightarrow{v}=r\sin A\cos C\widehat{i}+r\sin A\sin C\widehat{j}+r\cos A\widehat{k}=x\widehat{i}+y\widehat{j}+z\widehat{k}

Taking modulus on both sides we get

v=x2+y2+z2\left| \overrightarrow{v} \right|=\sqrt{{{x}^{2}}+{{y}^{2}}+{{z}^{2}}}

But magnitude of |v| = r.

Substituting the value of |v| we get

r=x2+y2+z2r=\sqrt{{{x}^{2}}+{{y}^{2}}+{{z}^{2}}}

Squaring both sides, we get

r2=(x2+y2+z2)2{{r}^{2}}={{\left( \sqrt{{{x}^{2}}+{{y}^{2}}+{{z}^{2}}} \right)}^{2}}

x2+y2+z2=r2\Rightarrow {{x}^{2}}+{{y}^{2}}+{{z}^{2}}={{r}^{2}}

Hence proved.

[2] Here x, y and z can be considered as the x-coordinate, y-coordinate and the z-coordinate of a point P and r as the distance of P from origin in 3-D plane.