Solveeit Logo

Question

Question: If \[{x_r} = \cos \left( {\dfrac{\pi }{{{3^r}}}} \right) + i\sin \left( {\dfrac{\pi }{{{3^r}}}} \rig...

If xr=cos(π3r)+isin(π3r){x_r} = \cos \left( {\dfrac{\pi }{{{3^r}}}} \right) + i\sin \left( {\dfrac{\pi }{{{3^r}}}} \right) then x1x2x3......{x_1} \cdot {x_2} \cdot {x_3}......\infty equals
A.i - i
B.ii
C.1 - 1
D.11

Explanation

Solution

Here, we have to find the product of the values. First, we will convert the complex number into Euler form and then simplify it using the exponential formula. Then we will substitute different values of rr and find the product of these values by using the complex form.

Formula used:
We will use the following formulas:
1.Euler form: cosθ+isinθ=eiθ\cos \theta + i\sin \theta = {e^{i\theta }}
2.Exponential formula: (em)n=emn{({e^m})^n} = {e^{mn}} ; amanao........=am+n+o+.......{a^m} \cdot {a^n} \cdot {a^o} \cdot ........ = {a^{m + n + o + .......}}
3.Trigonometric Ratio: cosπ2=0\cos \dfrac{\pi }{2} = 0 and sinπ2=1\sin \dfrac{\pi }{2} = 1
4.The formula for the sum of an infinite geometric series is given by Sn=a1r{S_n} = \dfrac{a}{{1 - r}} , where aa is the first term and rr is the common ratio.

Complete step-by-step answer:
We are given a value of xx in the form of a complex number.
xr=cos(π3r)+isin(π3r){x_r} = cos\left( {\dfrac{\pi }{{{3^r}}}} \right) + isin\left( {\dfrac{\pi }{{{3^r}}}} \right)
Now, we will convert a complex number into a Euler form cosθ+isinθ=eiθ\cos \theta + i\sin \theta = {e^{i\theta }}. Therefore, we get
xr=eiπ3r\Rightarrow {x_r} = {e^{\dfrac{{i\pi }}{{{3^r}}}}}
Now, by using the exponential formula (em)n=emn{({e^m})^n} = {e^{mn}}, we get
xr=(eiπ)13r\Rightarrow {x_r} = {\left( {{e^{i\pi }}} \right)^{\dfrac{1}{{{3^r}}}}}
Now Let us assume y=eiπy = {e^{i\pi }}. So, we get
xr=y13r\Rightarrow {x_r} = {y^{\dfrac{1}{{{3^r}}}}}
x1=13\Rightarrow {x_1} = \dfrac{1}{3}; x2=132=19{x_2} = \dfrac{1}{{{3^2}}} = \dfrac{1}{9};…………….
Exponential formula:
Now, by using the exponential formula amanao........=am+n+o+.......{a^m} \cdot {a^n} \cdot {a^o} \cdot ........ = {a^{m + n + o + .......}}, we have
x1x2x3....=y(13+19+127+181+.....+)\Rightarrow {x_1}{x_2}{x_3}....\infty = {y^{\left( {\dfrac{1}{3} + \dfrac{1}{9} + \dfrac{1}{{27}} + \dfrac{1}{{81}} + ..... + \infty } \right)}}
Since the power is the sum of an infinite geometric series, we have to use the formula for the sum of an infinite geometric series is given by Sn=a1r{S_n} = \dfrac{a}{{1 - r}}, we have
x1x2x3......=y(13113)\Rightarrow {x_1}{x_2}{x_3}......\infty = {y^{\left( {\dfrac{{\dfrac{1}{3}}}{{1 - \dfrac{1}{3}}}} \right)}}

By cross multiplication, we have
x1x2x3......=y(133313)\Rightarrow {x_1}{x_2}{x_3}......\infty = {y^{\left( {\dfrac{{\dfrac{1}{3}}}{{\dfrac{3}{3} - \dfrac{1}{3}}}} \right)}}
Subtracting the like terms, we have
x1x2x3......=y(1323)\Rightarrow {x_1}{x_2}{x_3}......\infty = {y^{\left( {\dfrac{{\dfrac{1}{3}}}{{\dfrac{2}{3}}}} \right)}}
Cancelling the denominators, we have
x1x2x3......=y(12)\Rightarrow {x_1}{x_2}{x_3}......\infty = {y^{\left( {\dfrac{1}{2}} \right)}}
Again substituting yy as eiπ{e^{i\pi }}, we have
x1x2x3......=(eiπ)12\Rightarrow {x_1}{x_2}{x_3}......\infty = {\left( {{e^{i\pi }}} \right)^{\dfrac{1}{2}}}
Now, by using the exponential formula (em)n=emn{({e^m})^n} = {e^{mn}}, we have
x1x2x3......=(eiπ2)\Rightarrow {x_1}{x_2}{x_3}......\infty = \left( {{e^{\dfrac{{i\pi }}{2}}}} \right)
Now, again converting Euler form into a complex number, we have
x1x2x3......=cosπ2+isinπ2\Rightarrow {x_1}{x_2}{x_3}......\infty = \cos \dfrac{\pi }{2} + i\sin \dfrac{\pi }{2}
Now, by using the trigonometric ratio, we have
x1x2x3......=0+i(1)\Rightarrow {x_1}{x_2}{x_3}......\infty = 0 + i(1)
x1x2x3......=i\Rightarrow {x_1}{x_2}{x_3}......\infty = i

Note: The polar form of a complex number is a different way to represent a complex number apart from rectangular form. Usually, we represent the complex numbers, in the form of z=x+iyz = x + iy where ii the imaginary number. But in polar form, the complex numbers are represented as the combination of modulus and argument. The modulus of a complex number is also called absolute value. This polar form is represented with the help of polar coordinates of real and imaginary numbers in the coordinate system.