Solveeit Logo

Question

Question: If \[{x_r} = \cos (\dfrac{\pi }{{{3^r}}}) - i\sin (\dfrac{\pi }{{{3^r}}})\],(where \(i = \sqrt { - 1...

If xr=cos(π3r)isin(π3r){x_r} = \cos (\dfrac{\pi }{{{3^r}}}) - i\sin (\dfrac{\pi }{{{3^r}}}),(where i=1i = \sqrt { - 1} ) then the value of x1.x2.x3...........{x_1}.{x_2}.{x_3}...........\infty is
A.1
B.-1
C.-ii
D.ii

Explanation

Solution

To solve this question first of all, apply Euler’s formula given as
eiθ=cosθisinθ\Rightarrow {e^{ - i\theta }} = \cos \theta - i\sin \theta
After solving the equation, you will get the value of x1.x2.x3...........{x_1}.{x_2}.{x_3}...........\infty i.e.
x1.x2.x3...........=ei(π3+π32+.......)\Rightarrow {x_1}.{x_2}.{x_3}...........\infty = {e^{i(\dfrac{\pi }{3} + \dfrac{\pi }{{{3^2}}} + .......\infty )}}
Now apply the formula for infinite G.P as you can see π3+π32+.......\dfrac{\pi }{3} + \dfrac{\pi }{{{3^2}}} + .......\infty series are in G.P and the formula for sum of G.P is given by
S=a1r\Rightarrow {S_\infty } = \dfrac{a}{{1 - r}}, where a is first term and r is common multiple.

Complete step-by-step answer:
In this question, an equation is given i.e.
xr=cos(π3r)isin(π3r)\Rightarrow {x_r} = \cos (\dfrac{\pi }{{{3^r}}}) - i\sin (\dfrac{\pi }{{{3^r}}}) ……..(1)
Let’s start with solving this equation by equating it with Euler’s formula we get,
eiθ=cosθisinθ\Rightarrow {e^{ - i\theta }} = \cos \theta - i\sin \theta
ei(π3r)=cos(π3r)isin(π3r)\Rightarrow {e^{ - i(\dfrac{\pi }{{{3^r}}})}} = \cos (\dfrac{\pi }{{{3^r}}}) - i\sin (\dfrac{\pi }{{{3^r}}}) ……..(2)
From (1) and (2)
xr=ei(π3r)\Rightarrow {x_r} = {e^{ - i(\dfrac{\pi }{{{3^r}}})}} …….(3)
To find the value of x1.x2.x3...........{x_1}.{x_2}.{x_3}...........\infty , we will find x1,x2,x3...........{x_1},{x_2},{x_3}...........\infty by putting value of r= 1,2,3…… respectively in equation 3 we get,
$$$$$ \Rightarrow {x_1} = {e^{ - i(\dfrac{\pi }{3})}},{x_2} = {e^{ - i(\dfrac{\pi }{{{3^2}}})}},{x_3} = {e^{ - i(\dfrac{\pi }{{{3^3}}})}}..........\infty Therefore,thevalueof Therefore, the value of{x_1}.{x_2}.{x_3}...........\infty i.e.i.e.
\Rightarrow {x_1}.{x_2}.{x_3}...........\infty = {e^{ - i(\dfrac{\pi }{3})}}.{e^{ - i(\dfrac{\pi }{{{3^2}}})}}.{e^{ - i(\dfrac{\pi }{{{3^3}}})}}..........\infty \\
\Rightarrow {x_1}.{x_2}.{x_3}...........\infty = {e^{ - i(\dfrac{\pi }{3} + \dfrac{\pi }{{{3^2}}} + \dfrac{\pi }{{{3^3}}} + ........\infty )}} \\
$
…….(4)

As π3+π32+π33+........\dfrac{\pi }{3} + \dfrac{\pi }{{{3^2}}} + \dfrac{\pi }{{{3^3}}} + ........\infty makes an infinite G.P with a=π3\dfrac{\pi }{3}and r=13\dfrac{1}{3}. So, apply the formula for sum of infinite G.P i.e.
S=a1r\Rightarrow {S_\infty } = \dfrac{a}{{1 - r}}
S=π3113 S=π31=π2  \Rightarrow {S_\infty } = \dfrac{{\dfrac{\pi }{3}}}{{1 - \dfrac{1}{3}}} \\\ \Rightarrow {S_\infty } = \dfrac{\pi }{{3 - 1}} = \dfrac{\pi }{2} \\\
So, π3+π32+π33+........=π2\dfrac{\pi }{3} + \dfrac{\pi }{{{3^2}}} + \dfrac{\pi }{{{3^3}}} + ........\infty = \dfrac{\pi }{2}, put this value in equation 4 we get,
x1.x2.x3...........=ei(π3+π32+π33+........)=ei(π2)\Rightarrow {x_1}.{x_2}.{x_3}...........\infty = {e^{ - i(\dfrac{\pi }{3} + \dfrac{\pi }{{{3^2}}} + \dfrac{\pi }{{{3^3}}} + ........\infty )}} = {e^{ - i(\dfrac{\pi }{2})}}
x1.x2.x3...........=cosπ2isinπ2=i\Rightarrow {x_1}.{x_2}.{x_3}...........\infty = \cos \dfrac{\pi }{2} - i\sin \dfrac{\pi }{2} = - i

Hence, the correct option is C.

Note: We can also do this question by directly putting the value of r but it gets complex by using Euler’s formula, it gets easier to solve. Common mistakes done by students while applying the formula is, they directly apply the formula by mistake. They can think of it as an A.P series but there is a multiple which is common not the difference. The Euler’s formula for cosθ+isinθ\cos \theta + i\sin \theta is
eiθ=cosθ+isinθ\Rightarrow {e^{i\theta }} = \cos \theta + i\sin \theta