Solveeit Logo

Question

Question: If \(x\operatorname{Sin}\left( a+y \right)+\operatorname{Sin}a\operatorname{Cos}\left( a+y \right)=0...

If xSin(a+y)+SinaCos(a+y)=0x\operatorname{Sin}\left( a+y \right)+\operatorname{Sin}a\operatorname{Cos}\left( a+y \right)=0 , prove that dydx=Sin2(a+y)Sina\dfrac{dy}{dx}=\dfrac{{{\operatorname{Sin}}^{2}}\left( a+y \right)}{\operatorname{Sin}a} .

Explanation

Solution

Separate the terms involving xx and yy , put arrangement involving xx in Right Hand Side and arrangement involving yy in Left Hand Side and then differentiate both side with respect to xx using the chain rule ddxf(g(x))=f(g(x))g(x)\dfrac{d}{dx}f\left( g\left( x \right) \right)=f'\left( g\left( x \right) \right)g'\left( x \right) and hence solve for dydx\dfrac{dy}{dx} to get the desired equality.

Complete step by step answer:
We are given an implicit equation involving variables xx and yy ,
And we have to prove a term for dydx\dfrac{dy}{dx}
First consider the given implicit equation ,
xSin(a+y)+SinaCos(a+y)=0x\operatorname{Sin}\left( a+y \right)+\operatorname{Sin}a\operatorname{Cos}\left( a+y \right)=0
Now, we will separate the terms for xx and yy ,
xSin(a+y)=SinaCos(a+y) Sin(a+y)Cos(a+y)=Sinax\begin{aligned} & x\operatorname{Sin}\left( a+y \right)=-\operatorname{Sin}a\operatorname{Cos}\left( a+y \right) \\\ & \dfrac{\operatorname{Sin}\left( a+y \right)}{\operatorname{Cos}\left( a+y \right)}=-\dfrac{\operatorname{Sin}a}{x} \end{aligned}
Since, we need reciprocal of Sina\operatorname{Sin}a and the term in the proof does not involve xx so , we will reciprocate on both the sides and get,
Cot(a+y)=xSina\operatorname{Cot}\left( a+y \right)=-\dfrac{x}{\operatorname{Sin}a}
Since , The Left Hand Side involves function of a function we have to use the chain rule here , i.e.
ddxf(g(x))=f(g(x))g(x)\dfrac{d}{dx}f\left( g\left( x \right) \right)=f'\left( g\left( x \right) \right)g'\left( x \right)
Now, differentiating both sides with respect to x''x'' , we get,
(For differentiating the Left Hand Side , we will use, ddxCotx=Cosec2x\dfrac{d}{dx}\operatorname{Cot}x=-{{\operatorname{Cosec}}^{2}}x )
Cosec2(a+y)dydx=1Sina dydx=1Cosec2(a+y)Sina dydx=Sin2(a+y)Sina\begin{aligned} & -{{\operatorname{Cosec}}^{2}}\left( a+y \right)\dfrac{dy}{dx}=-\dfrac{1}{\operatorname{Sin}a} \\\ & \dfrac{dy}{dx}=\dfrac{1}{{{\operatorname{Cosec}}^{2}}\left( a+y \right)\operatorname{Sin}a} \\\ & \dfrac{dy}{dx}=\dfrac{{{\operatorname{Sin}}^{2}}\left( a+y \right)}{\operatorname{Sin}a} \end{aligned} Since, 1Cosecx=Sinx\dfrac{1}{\operatorname{Cosec}x}=\operatorname{Sin}x

Hence, dydx=Sin2(a+y)Sina\dfrac{dy}{dx}=\dfrac{{{\operatorname{Sin}}^{2}}\left( a+y \right)}{\operatorname{Sin}a}

Note: At first when we see the the question , there is the possibility that someone try to differentiate the implicit equation itself with respect to x''x'' , without doing any changes in the equation and then solve for dydx\dfrac{dy}{dx} . This is not wrong but this could complicate the equation for solving for dydx\dfrac{dy}{dx} , and it may happen that we could not even prove the equality . So, the best approach is to first separate it into terms , first involving x''x'' and second involving y''y'' and then differentiating both sides with respect to x''x'' and get the desired results.