Solveeit Logo

Question

Mathematics Question on Inverse Trigonometric Functions

If xnπ,x(2n+1)π2.nZ,x\neq n \pi ,\, x \neq\,(2n+1)\frac {\pi}{2}.n\in Z, then Sin1(Cosx)+Cos1(Sinx)Tan1(Cotx)+Cot1(Tanx)\frac {Sin^{-1}(Cos x) + Cos^{-1}(Sin x)}{Tan ^{-1}(Cot x)+ Cot^{-1}(Tan x)} =

A

π6\frac {\pi} {6}

B

π3\frac {\pi} {3}

C

π2\frac {\pi} {2}

D

π4\frac {\pi} {4}

Answer

π4\frac {\pi} {4}

Explanation

Solution

xnπ,x(2n+1)π2,nZx \neq n \pi, x \neq(2 n+1) \frac{\pi}{2}, n \in Z
Then, sin1(cosx)+cos1(sinx)tan1(cotx)+cot1(tanx)\frac{\sin ^{-1}(\cos x)+\cos ^{-1}(\sin x)}{\tan ^{-1}(\cot x)+\cot ^{-1}(\tan x)}
=\frac{\sin ^{-1}\left\\{\sin \left(\frac{\pi}{2}-x\right)\right\\}+\cos ^{-1}\left\\{\cos \left(\frac{\pi}{2}-x\right)\right\\}}{\tan ^{-1}\left\\{\tan \left(\frac{\pi}{2}-x\right)\right\\}+\cot ^{-1}\left\\{\cot \left(\frac{\pi}{2}-x\right)\right\\}}
=(π2x)+(π2x)(π2x)+(π2x)=(π2xπ2x)=1=\frac{\left(\frac{\pi}{2}-x\right)+\left(\frac{\pi}{2}-x\right)}{\left(\frac{\pi}{2}-x\right)+\left(\frac{\pi}{2}-x\right)}=\left(\frac{\pi-2 x}{\pi-2 x}\right)=1
But from the option we take x=π4x=\frac{\pi}{4}
=sin1(cosπ4)+cos1(sinπ4)tan1(cotπ4)+cot1(tanπ4)=\frac{\sin ^{-1}\left(\cos \frac{\pi}{4}\right)+\cos ^{-1}\left(\sin \frac{\pi}{4}\right)}{\tan ^{-1}\left(\cot \frac{\pi}{4}\right)+\cot ^{-1}\left(\tan \frac{\pi}{4}\right)}
=sin1(12)+cos1(12)tan1(1)+cot1(1)=\frac{\sin ^{-1}\left(\frac{1}{\sqrt{2}}\right)+\cos ^{-1}\left(\frac{1}{\sqrt{2}}\right)}{\tan ^{-1}(1)+\cot ^{-1}(1)}
{sin1x+cos1x=π2  tan1x+cot1x=π2}\begin{Bmatrix}\sin^{-1}x +\cos^{-1}&x=\frac{\pi}{2}\\\ \because&\\\ \tan^{-1} x +cot^{-1}&x=\frac{\pi}{2}\end{Bmatrix}
=π/2π/2=1=\frac{\pi / 2}{\pi / 2}=1