Question
Mathematics Question on Inverse Trigonometric Functions
If x=nπ,x=(2n+1)2π.n∈Z, then Tan−1(Cotx)+Cot−1(Tanx)Sin−1(Cosx)+Cos−1(Sinx) =
A
6π
B
3π
C
2π
D
4π
Answer
4π
Explanation
Solution
x=nπ,x=(2n+1)2π,n∈Z
Then, tan−1(cotx)+cot−1(tanx)sin−1(cosx)+cos−1(sinx)
=\frac{\sin ^{-1}\left\\{\sin \left(\frac{\pi}{2}-x\right)\right\\}+\cos ^{-1}\left\\{\cos \left(\frac{\pi}{2}-x\right)\right\\}}{\tan ^{-1}\left\\{\tan \left(\frac{\pi}{2}-x\right)\right\\}+\cot ^{-1}\left\\{\cot \left(\frac{\pi}{2}-x\right)\right\\}}
=(2π−x)+(2π−x)(2π−x)+(2π−x)=(π−2xπ−2x)=1
But from the option we take x=4π
=tan−1(cot4π)+cot−1(tan4π)sin−1(cos4π)+cos−1(sin4π)
=tan−1(1)+cot−1(1)sin−1(21)+cos−1(21)
⎩⎨⎧sin−1x+cos−1 ∵ tan−1x+cot−1x=2πx=2π⎭⎬⎫
=π/2π/2=1