Solveeit Logo

Question

Question: If\(x \ne \dfrac{{n\pi }}{2}\) and \({\left( {\cos x} \right)^{{{\sin }^2}x - 3\sin x + 2}} = 1\) th...

Ifxnπ2x \ne \dfrac{{n\pi }}{2} and (cosx)sin2x3sinx+2=1{\left( {\cos x} \right)^{{{\sin }^2}x - 3\sin x + 2}} = 1 then all solutions of xx are given by
A. 2nπ+π22n\pi + \dfrac{\pi }{2}
B. (2n+1)ππ2\left( {2n + 1} \right)\pi - \dfrac{\pi }{2}
C. nπ+(1)nπ2n\pi + {\left( { - 1} \right)^n}\dfrac{\pi }{2}
D. None of these

Explanation

Solution

First, we shall analyze the given information so that we are able to solve the problem. Here we are given that xnπ2x \ne \dfrac{{n\pi }}{2} and(cosx)sin2x3sinx+2=1{\left( {\cos x} \right)^{{{\sin }^2}x - 3\sin x + 2}} = 1. And, we are asked to calculate the solution of xx. We all know that anything with a power of zero is one. So we need to apply10=(cosx)0{1^0} = {\left( {\cos x} \right)^0}in the given equation. Then we need to analyze the obtained solution whether it will be the correct solution or not.

Complete step by step answer:
It is given that(cosx)sin2x3sinx+2=1{\left( {\cos x} \right)^{{{\sin }^2}x - 3\sin x + 2}} = 1
It is given thatxnπ2x \ne \dfrac{{n\pi }}{2}
Whenn=1n = 1 xπ2x \ne \dfrac{\pi }{2} which impliescosxcosπ2\cos x \ne \cos \dfrac{\pi }{2}
Hence we getcosx0\cos x \ne 0 .
Whenn=0n = 0 x0x \ne 0 which impliescosxcos0\cos x \ne \cos 0
Hence we getcosx1\cos x \ne 1
We are asked to calculate the solution of xx
(cosx)sin2x3sinx+2=1(cosx)sin2x3sinx+2=(cosx)0{\left( {\cos x} \right)^{{{\sin }^2}x - 3\sin x + 2}} = 1 \Rightarrow {\left( {\cos x} \right)^{{{\sin }^2}x - 3\sin x + 2}} = {\left( {\cos x} \right)^0} (Here we applied10=(cosx)0{1^0} = {\left( {\cos x} \right)^0}
(cosx)sin2x3sinx+2=(cosx)0\Rightarrow {\left( {\cos x} \right)^{{{\sin }^2}x - 3\sin x + 2}} = {\left( {\cos x} \right)^0}
Since the bases are equal, we shall compare the exponents/power ofcosx\cos x
sin2x3sinx+2=0\Rightarrow {\sin ^2}x - 3\sin x + 2 = 0
Now, we need to split the middle term.
sin2xsinx2sinx+2=0\Rightarrow {\sin ^2}x - \sin x - 2\sin x + 2 = 0
We shall pick the common terms.
sinx(sinx1)2(sinx1)=0\Rightarrow \sin x\left( {\sin x - 1} \right) - 2\left( {\sin x - 1} \right) = 0
(sinx1)(sinx2)=0\Rightarrow \left( {\sin x - 1} \right)\left( {\sin x - 2} \right) = 0
Hence, (sinx1)=0or(sinx2)=0\left( {\sin x - 1} \right) = 0or\left( {\sin x - 2} \right) = 0
That is sinx=1orsinx=2\sin x = 1or\sin x = 2
Here sinx=2\sin x = 2is not possible.
Now, considersinx=1\sin x = 1
sinx=1cosx=0\sin x = 1 \Rightarrow \cos x = 0
It is given thatxnπ2x \ne \dfrac{{n\pi }}{2}
Whenn=1n = 1 xπ2x \ne \dfrac{\pi }{2} which impliescosxcosπ2\cos x \ne \cos \dfrac{\pi }{2}
Hence we getcosx0\cos x \ne 0
Hence sinx=1\sin x = 1is also not possible.
Hence there is no solution for xx.

So, the correct answer is “Option D”.

Note: Here we said thatsinx=2\sin x = 2is not possible. The sine wave exists between minus one and one (i.e. 1sinx1 - 1 \leqslant \sin x \leqslant 1). Since the sine lies between minus one and one, the value of sine two is not applicable. Hence, we neglect the solutionsinx=2\sin x = 2.
Also, we are given thatxnπ2x \ne \dfrac{{n\pi }}{2}. We shall substituten=1n = 1, we obtainxπ2x \ne \dfrac{\pi }{2}. This implies cosxcosπ2\cos x \ne \cos \dfrac{\pi }{2} . That iscosx0\cos x \ne 0 . Here cosx0\cos x \ne 0impliessinx1\sin x \ne 1. So we neglect this solution too. Hence we get no solution forxx.
Here option 1) is2nπ+π22n\pi + \dfrac{\pi }{2}. Whenn=1n = 1, sin2π+π2=sin5π2=1\sin 2\pi + \dfrac{\pi }{2} = \sin \dfrac{{5\pi }}{2} = 1
Hence we cannot choose the option2nπ+π22n\pi + \dfrac{\pi }{2}.
Here option 2) is(2n+1)ππ2\left( {2n + 1} \right)\pi - \dfrac{\pi }{2}. Whenn=1n = 1, sin(3n)ππ2=sin5π2=1\sin \left( {3n} \right)\pi - \dfrac{\pi }{2} = \sin \dfrac{{5\pi }}{2} = 1
Hence we cannot choose the option(2n+1)ππ2\left( {2n + 1} \right)\pi - \dfrac{\pi }{2}.
Here option 3) isnπ+(1)nπ2n\pi + {\left( { - 1} \right)^n}\dfrac{\pi }{2}. Whenn=1n = 1, sinππ2=sinπ2=1\sin \pi - \dfrac{\pi }{2} = \sin \dfrac{\pi }{2} = 1
Hence we cannot choose the optionnπ+(1)nπ2n\pi + {\left( { - 1} \right)^n}\dfrac{\pi }{2}.
Therefore, we chose none of these.