Solveeit Logo

Question

Mathematics Question on Determinants

If x0,x+12x+13x+1 2x4x+36x+3 4x+46x+48x+4 =0,x\ne 0,\,\left| \begin{matrix} x+1 & 2x+1 & 3x+1 \\\ 2x & 4x+3 & 6x+3 \\\ 4x+4 & 6x+4 & 8x+4 \\\ \end{matrix} \right|=0, then 2x+12x+1 is equal to

A

xx

B

00

C

2x2x

D

3x3x

Answer

00

Explanation

Solution

Given, x+12x+13x+1 2x4x+36x+3 4x+46x+48x+4 =0\left| \begin{matrix} x+1 & 2x+1 & 3x+1 \\\ 2x & 4x+3 & 6x+3 \\\ 4x+4 & 6x+4 & 8x+4 \\\ \end{matrix} \right|=0
\Rightarrow 20x2x 2x4x+36x+3 2x+23x+24x+2 =02\left| \begin{matrix} 0 & x & 2x \\\ 2x & 4x+3 & 6x+3 \\\ 2x+2 & 3x+2 & 4x+2 \\\ \end{matrix} \right|=0
Applying (R12R1R3)({{R}_{1}}\to 2{{R}_{1}}-{{R}_{3}})
\Rightarrow 20x0 2x4x+32x3 2x+23x+24x+2 =02\left| \begin{matrix} 0 & x & 0 \\\ 2x & 4x+3 & -2x-3 \\\ 2x+2 & 3x+2 & 4x+2 \\\ \end{matrix} \right|=0 Applying (C3C32C2)({{C}_{3}}\to {{C}_{3}}-2{{C}_{2}})
\Rightarrow 40x0 x4x+32x+3 x+13x+22x+2 =0-4\left| \begin{matrix} 0 & x & 0 \\\ x & 4x+3 & 2x+3 \\\ x+1 & 3x+2 & 2x+2 \\\ \end{matrix} \right|=0
\Rightarrow 4x[2x2+2x(2x+3)(x+1)]=0-4x[2{{x}^{2}}+2x-(2x+3)(x+1)]=0
\Rightarrow 4x[2x2+2x(2x2+5x+3)]=0-4x[2{{x}^{2}}+2x-(2{{x}^{2}}+5x+3)]=0
\Rightarrow 4x[3x+3]=04x[3x+3]=0
\Rightarrow x+1=0x+1=0 (x0given)(\because \,\,x\ne 0\,\,given)