Solveeit Logo

Question

Question: If \[{x_n} > {x_{n - 1}} > ... > {x_2} > {x_1} > {1_1}\] then the value of \[n{\text{ }}log{\text{ }...

If xn>xn1>...>x2>x1>11{x_n} > {x_{n - 1}} > ... > {x_2} > {x_1} > {1_1} then the value of n log mn{\text{ }}log{\text{ }}m
A.00
B.11
C.22

Explanation

Solution

In the given question, we are given that xn>xn1....>x2>x1>1{x_n} > {x_{n - 1}}.... > {x_2} > {x_1} > 1 where n is any constant and further we have to find out the value of these xn,xn1{x_n},{x_{n - 1}} with logarithm. Using logarithmic identities, We will find the value of these logarithm values asked in the question.

Complete step-by-step answer:
In the given question we have to find out the value of
logx1logx2logx3....logxnxn(xn1)....x1{\log _{{x_1}}}{\log _{{x_2}}}{\log _{{x_3}}}....{\log _{{x_n}}}{x_n}^{\left( {{x_{n - 1}}} \right){{....}^{{x_1}}}}
Where the values of xn,xn1,.....,x2,x1,1{x_n},{x_{n - 1}},.....,{x_2},{x_1},1
Are given in an order which isxn,>xn1>.....>x2>x1>1{x_{n,}} > {x_{n - 1}} > ..... > {x_2} > {x_1} > 1
Since we have to find the value in log.
Therefore, using logarithmic identities, we will find the value of asked question. We are to find the value of
logx1logx2logx3....logxnxn(xn1)....x1{\log _{{x_1}}}{\log _{{x_2}}}{\log _{{x_3}}}....{\log _{{x_n}}}{x_n}^{\left( {{x_{n - 1}}} \right){{....}^{{x_1}}}}
Now using the identity logmn=nlogm\log {m^n} = n\log m
We get logx1logx2logx3....logxnxn(xn1)....x1{\log _{{x_1}}}{\log _{{x_2}}}{\log _{{x_3}}}....{\log _{{x_n}}}{x_n}^{\left( {{x_{n - 1}}} \right){{....}^{{x_1}}}} x1logxnxn{x_{{1_{{{\log }_{^{^{{x_n}^{{x_n}}}}}}}}}}
Also logmm=1{\log _m}m = 1 therefore logxnxn=1{\log _{{x_n}}}{x_n} = 1
We get logx1logx2logx3....logxnxn(xn1)....x1{\log _{{x_1}}}{\log _{{x_2}}}{\log _{{x_3}}}....{\log _{{x_n}}}{x_n}^{\left( {{x_{n - 1}}} \right){{....}^{{x_1}}}}
Therefore, we get logx1logx2logx3x3x2x1...............(1){\log _{{x_1}}}{\log _{{x_2}}}{\log _{{x_3}}}{x_3}^{{x_2}^{{x_1}}}...............(1)
Again, in the third term logx3x3(x2x1){\log _{{x_3}}}{x_3}^{\left( {{x_2}^{{x_1}}} \right)}
We get x2x1logx3x3{x_2}^{{x_1}}{\log _{{x_3}}}{x_3}
Since logmm=1{\log _m}m = 1therefore logx3x3=1{\log _{{x_3}}}{x_3} = 1
Therefore equation 11 becomes logx1logx2x2x1{\log _{{x_1}}}{\log _{{x_2}}}{x_2}^{{x_1}}
Again using the same logarithmic identities, we get
logx1,x1logx2x2{\log _{{x_1}}},{x_1}{\log _{{x_2}^{{x_2}}}}
Again logx2x2=1{\log _{{x^2}}}{x_2} = 1, we get logx1x1{\log _{{x_1}}}{x_1}
Which is logx1logx2logx3....logxnxn(xn1)....x1=1{\log _{{x_1}}}{\log _{{x_2}}}{\log _{{x_3}}}....{\log _{{x_n}}}{x_n}^{\left( {{x_{n - 1}}} \right){{....}^{{x_1}}}} = 1
So option (B) is correct.
In this question, We had used two identities, that for two constants or variables m and n logmn=1{\log _{{m^n}}} = 1 which means if both in the base and in the value if there is same constant or variable then the value of logmm=1{\log _{{m^m}}} = 1. Also, second identity is logmn\log {m^n}, which means log of m to the power n, then the value of logmn\log {m^n} becomes n logmn{\text{ }}logm that means power comes in front of the log and the value of m is there.

Note: Logarithmic is the mathematical expression or formula that is used to find out the values of various variables and constants. Some basic identities of logarithm for two variables m and n are logmn=logm+logn,logmn=logmlogn\log mn = \log m + \log n,\log \dfrac{m}{n} = \log m - \log n
logmn=nlogm\log {m^n} = n\log m and logmm=1{\log _{{m^m}}} = 1
Using these logarithmic identities, we can find out the values of variables or constants as well as the relationship between them.