Solveeit Logo

Question

Question: If \[{x_n} = \cos \left( {\dfrac{\pi }{{{2^n}}}} \right) + i\sin \left( {\dfrac{\pi }{{{2^n}}}} \rig...

If xn=cos(π2n)+isin(π2n),{x_n} = \cos \left( {\dfrac{\pi }{{{2^n}}}} \right) + i\sin \left( {\dfrac{\pi }{{{2^n}}}} \right), then x1.x2.x3..........{x_1}.{x_2}.{x_3}..........\infty is equal to_________

Explanation

Solution

Hint : We solve this by putting the values of n in the given equation. We use the relations between cosine, sine and exponential function eiθ=cosθ+isinθ{e^{i\theta }} = \cos \theta + i\sin \theta . Which is also known as Euler’s formula in complex analysis. Using this find the value of x1{x_1} , x2{x_2} , x3{x_3} …. and substituting in x1.x2.x3..........{x_1}.{x_2}.{x_3}..........\infty we get the required value.

Complete step-by-step answer :
Now, given xn=cos(π2n)+isin(π2n){x_n} = \cos \left( {\dfrac{\pi }{{{2^n}}}} \right) + i\sin \left( {\dfrac{\pi }{{{2^n}}}} \right) . ---- (1) and x1.x2.x3{x_1}.{x_2}.{x_3} - - - - \infty ----- (2)
To find the values of x1{x_1} , x2{x_2} , x3{x_3} ….
Put n=1n = 1 in equation (1) we get:
x1=cos(π21)+isin(π21)\Rightarrow {x_1} = \cos \left( {\dfrac{\pi }{{{2^1}}}} \right) + i\sin \left( {\dfrac{\pi }{{{2^1}}}} \right)
On the right hand side, Comparing with eiθ=cosθ+isinθ{e^{i\theta }} = \cos \theta + i\sin \theta .
x1=ei(π2)\Rightarrow {x_1} = {e^{i\left( {\dfrac{\pi }{2}} \right)}}
Put n=2n = 2 in equation (1) we get:
x2=cos(π22)+isin(π22)\Rightarrow {x_2} = \cos \left( {\dfrac{\pi }{{{2^2}}}} \right) + i\sin \left( {\dfrac{\pi }{{{2^2}}}} \right)
x2=cos(π4)+isin(π4)\Rightarrow {x_2} = \cos \left( {\dfrac{\pi }{4}} \right) + i\sin \left( {\dfrac{\pi }{4}} \right)
On the right hand side, Comparing with eiθ=cosθ+isinθ{e^{i\theta }} = \cos \theta + i\sin \theta .
x2=ei(π4)\Rightarrow {x_2} = {e^{i\left( {\dfrac{\pi }{4}} \right)}}
Put n=3n = 3 in equation (3) we get:
x3=cos(π23)+isin(π23)\Rightarrow {x_3} = \cos \left( {\dfrac{\pi }{{{2^3}}}} \right) + i\sin \left( {\dfrac{\pi }{{{2^3}}}} \right)
x3=cos(π8)+isin(π8)\Rightarrow {x_3} = \cos \left( {\dfrac{\pi }{8}} \right) + i\sin \left( {\dfrac{\pi }{8}} \right)
On the right hand side, Comparing with eiθ=cosθ+isinθ{e^{i\theta }} = \cos \theta + i\sin \theta .
x3=ei(π8)\Rightarrow {x_3} = {e^{i\left( {\dfrac{\pi }{8}} \right)}}
Continuing like this and substituting in equation (2), we get:
x1.x2.x3..........=ei(π2).ei(π4).ei(π8){x_1}.{x_2}.{x_3}..........\infty = {e^{i\left( {\dfrac{\pi }{2}} \right)}}.{e^{i\left( {\dfrac{\pi }{4}} \right)}}.{e^{i\left( {\dfrac{\pi }{8}} \right)}} - - - - \infty
Since the base is same on the right hand side we can add the exponent’s term, we get:
Taking ii as a common, we get:
=ei((π2)+(π4)+(π8)+)= {e^{i\left( {\left( {\dfrac{\pi }{2}} \right) + \left( {\dfrac{\pi }{4}} \right) + \left( {\dfrac{\pi }{8}} \right) + - - - - \infty } \right)}}
Taking π\pi as common, we get:
=eiπ(12+14+18+)= {e^{i\pi \left( {\dfrac{1}{2} + \dfrac{1}{4} + \dfrac{1}{8} + - - - - - - } \right)}}
We know that 12+14+18+=n=1(12)n\dfrac{1}{2} + \dfrac{1}{4} + \dfrac{1}{8} + - - - - - = \sum\limits_{n = 1}^\infty {{{\left( {\dfrac{1}{2}} \right)}^n}}
Also,
n=1(12)n=12112=1\sum\limits_{n = 1}^\infty {{{\left( {\dfrac{1}{2}} \right)}^n}} = \dfrac{{\dfrac{1}{2}}}{{1 - \dfrac{1}{2}}} = 1 (Taking L.C.M and simplifying)
=eiπ[12112]= {e^{i\pi \left[ {\dfrac{{\dfrac{1}{2}}}{{1 - \dfrac{1}{2}}}} \right] }}
=eiπ= {e^{i\pi }}
We know from Euler’s formula that eiθ=cosθ+isinθ{e^{i\theta }} = \cos \theta + i\sin \theta . Comparing and we get,
=cosπ+isinπ= \cos \pi + i\sin \pi
We know the values of sinπ=0\sin \pi = 0 and cosπ=1\cos \pi = - 1 .
Substituting in above we get,
=1= - 1
Hence, the value of x1.x2.x3=1{x_1}.{x_2}.{x_3} - - - - \infty = - 1 .
So, the correct answer is “-1”.

Note : All we did is find the values of x1.x2{x_1}.{x_2} and x3{x_3} using the Euler’s formula. Substitute this in equation in (2), we get the required value. Remember this eiθ=cosθ+isinθ{e^{i\theta }} = \cos \theta + i\sin \theta well. We used the basic exponent and power formula ea.eb.ec=ea+b+c{e^a}.{e^b}.{e^c} = {e^{a + b + c}} . Since the base is the same we can add the exponent. We express cosine and sine in terms of ee . Just be careful in the substituting and calculation part. The calculation part might be difficult.