Solveeit Logo

Question

Question: If \({X_n} = \cos \dfrac{\pi }{{{3^n}}} + i\sin \dfrac{\pi }{{{3^n}}}\), then \({X_1} \times {X_2} \...

If Xn=cosπ3n+isinπ3n{X_n} = \cos \dfrac{\pi }{{{3^n}}} + i\sin \dfrac{\pi }{{{3^n}}}, then X1×X2×X3×...{X_1} \times {X_2} \times {X_3} \times ... equal to
A) 1
B) -1
C) i
D) -i

Explanation

Solution

This question of a complex number in trigonometric form. In this question, Xn=cosπ3n+isinπ3n{X_n} = \cos \dfrac{\pi }{{{3^n}}} + i\sin \dfrac{\pi }{{{3^n}}} is given. And we want to find out the value of X1×X2×X3×...{X_1} \times {X_2} \times {X_3} \times .... To find this value, let us substitute the value of n is 1 in the equation Xn{X_n}, the value of n is 2 in the equation Xn{X_n}, and so on. Now, substitute the above values in X1×X2×X3×...{X_1} \times {X_2} \times {X_3} \times ....

Complete step-by-step solution:
In this question, given that
Xn=cosπ3n+isinπ3n{X_n} = \cos \dfrac{\pi }{{{3^n}}} + i\sin \dfrac{\pi }{{{3^n}}}.................(1)
Let us substitute the value of n is equal to 1 in the equation (1).
Xn=cosπ3n+isinπ3n{X_n} = \cos \dfrac{\pi }{{{3^n}}} + i\sin \dfrac{\pi }{{{3^n}}}
Here, n=1n = 1.
X1=cosπ31+isinπ31\Rightarrow {X_1} = \cos \dfrac{\pi }{{{3^1}}} + i\sin \dfrac{\pi }{{{3^1}}}
Substitute the value of 31=3{3^1} = 3.
X1=cosπ3+isinπ3\Rightarrow {X_1} = \cos \dfrac{\pi }{3} + i\sin \dfrac{\pi }{3}
Now, taken=2n = 2.
X2=cosπ32+isinπ32\Rightarrow {X_2} = \cos \dfrac{\pi }{{{3^2}}} + i\sin \dfrac{\pi }{{{3^2}}}
Now, taken=3n = 3.
X3=cosπ33+isinπ33\Rightarrow {X_3} = \cos \dfrac{\pi }{{{3^3}}} + i\sin \dfrac{\pi }{{{3^3}}}
Substitute the values of X1,X2,X3{X_1},{X_2},{X_3}in X1×X2×X3×...{X_1} \times {X_2} \times {X_3} \times ...
X1×X2×X3×...\Rightarrow {X_1} \times {X_2} \times {X_3} \times ...
That is equal to
(cosπ3+isinπ3)×(cosπ32+isinπ32)×(cosπ33+isinπ33)×...\Rightarrow \left( {\cos \dfrac{\pi }{3} + i\sin \dfrac{\pi }{3}} \right) \times \left( {\cos \dfrac{\pi }{{{3^2}}} + i\sin \dfrac{\pi }{{{3^2}}}} \right) \times \left( {\cos \dfrac{\pi }{{{3^3}}} + i\sin \dfrac{\pi }{{{3^3}}}} \right) \times ...
Let us write the real part and the imaginary part together.
cos(π3+π32+π33+...+)+isin(π3+π32+π33+...+)\Rightarrow \cos \left( {\dfrac{\pi }{3} + \dfrac{\pi }{{{3^2}}} + \dfrac{\pi }{{{3^3}}} + ... + \infty } \right) + i\sin \left( {\dfrac{\pi }{3} + \dfrac{\pi }{{{3^2}}} + \dfrac{\pi }{{{3^3}}} + ... + \infty } \right) …………….....(2)
Now, π3+π32+π33+...+=π3113\dfrac{\pi }{3} + \dfrac{\pi }{{{3^2}}} + \dfrac{\pi }{{{3^3}}} + ... + \infty = \dfrac{{\dfrac{\pi }{3}}}{{1 - \dfrac{1}{3}}}
Let us take the least common factor to the denominator.
π3+π32+π33+...+=π3313\Rightarrow \dfrac{\pi }{3} + \dfrac{\pi }{{{3^2}}} + \dfrac{\pi }{{{3^3}}} + ... + \infty = \dfrac{{\dfrac{\pi }{3}}}{{\dfrac{{3 - 1}}{3}}}
So,
π3+π32+π33+...+=π323\Rightarrow \dfrac{\pi }{3} + \dfrac{\pi }{{{3^2}}} + \dfrac{\pi }{{{3^3}}} + ... + \infty = \dfrac{{\dfrac{\pi }{3}}}{{\dfrac{2}{3}}}
That is equal to
π3+π32+π33+...+=π2\Rightarrow \dfrac{\pi }{3} + \dfrac{\pi }{{{3^2}}} + \dfrac{\pi }{{{3^3}}} + ... + \infty = \dfrac{\pi }{2}
Substitute the above value in equation (2).
cos(π2)+isin(π2)\Rightarrow \cos \left( {\dfrac{\pi }{2}} \right) + i\sin \left( {\dfrac{\pi }{2}} \right)
The value of cosπ2=0\cos \dfrac{\pi }{2} = 0 and sinπ2=1\sin \dfrac{\pi }{2} = 1.
So,
0+i(1)\Rightarrow 0 + i(1)
That is equal to ii
Hence, our answer is option (C), ‘ii’.

Note: Here, we must remember the trigonometry ratios and the value of ratio at the angles 0, 30, 45, 60, and 90. And also know about trigonometry function in quadrant coordinate.
The value of sin0=0\sin 0^\circ = 0
The value of sin30=12\sin 30^\circ = \dfrac{1}{2}
The value of sin45=12\sin 45^\circ = \dfrac{1}{{\sqrt 2 }}
The value of sin60=32\sin 60^\circ = \dfrac{{\sqrt 3 }}{2}
The value of sin90=1\sin 90^\circ = 1
The value of cos0=1\cos 0^\circ = 1
The value of cos30=32\cos 30^\circ = \dfrac{{\sqrt 3 }}{2}
The value of cos45=12\cos 45^\circ = \dfrac{1}{{\sqrt 2 }}
The value of cos60=12\cos 60^\circ = \dfrac{1}{2}
The value of cos90=0\cos 90^\circ = 0
The value of tan0=0\tan 0^\circ = 0
The value of tan30=13\tan 30^\circ = \dfrac{1}{{\sqrt 3 }}
The value of tan45=1\tan 45^\circ = 1
The value of tan60=3\tan 60^\circ = \sqrt 3
The value of tan90\tan 90^\circ is not defined.