Question
Question: If \({X_n} = \cos \dfrac{\pi }{{{3^n}}} + i\sin \dfrac{\pi }{{{3^n}}}\), then \({X_1} \times {X_2} \...
If Xn=cos3nπ+isin3nπ, then X1×X2×X3×... equal to
A) 1
B) -1
C) i
D) -i
Solution
This question of a complex number in trigonometric form. In this question, Xn=cos3nπ+isin3nπ is given. And we want to find out the value of X1×X2×X3×.... To find this value, let us substitute the value of n is 1 in the equation Xn, the value of n is 2 in the equation Xn, and so on. Now, substitute the above values in X1×X2×X3×....
Complete step-by-step solution:
In this question, given that
Xn=cos3nπ+isin3nπ.................(1)
Let us substitute the value of n is equal to 1 in the equation (1).
Xn=cos3nπ+isin3nπ
Here, n=1.
⇒X1=cos31π+isin31π
Substitute the value of 31=3.
⇒X1=cos3π+isin3π
Now, taken=2.
⇒X2=cos32π+isin32π
Now, taken=3.
⇒X3=cos33π+isin33π
Substitute the values of X1,X2,X3in X1×X2×X3×...
⇒X1×X2×X3×...
That is equal to
⇒(cos3π+isin3π)×(cos32π+isin32π)×(cos33π+isin33π)×...
Let us write the real part and the imaginary part together.
⇒cos(3π+32π+33π+...+∞)+isin(3π+32π+33π+...+∞) …………….....(2)
Now, 3π+32π+33π+...+∞=1−313π
Let us take the least common factor to the denominator.
⇒3π+32π+33π+...+∞=33−13π
So,
⇒3π+32π+33π+...+∞=323π
That is equal to
⇒3π+32π+33π+...+∞=2π
Substitute the above value in equation (2).
⇒cos(2π)+isin(2π)
The value of cos2π=0 and sin2π=1.
So,
⇒0+i(1)
That is equal to i
Hence, our answer is option (C), ‘i’.
Note: Here, we must remember the trigonometry ratios and the value of ratio at the angles 0, 30, 45, 60, and 90. And also know about trigonometry function in quadrant coordinate.
The value of sin0∘=0
The value of sin30∘=21
The value of sin45∘=21
The value of sin60∘=23
The value of sin90∘=1
The value of cos0∘=1
The value of cos30∘=23
The value of cos45∘=21
The value of cos60∘=21
The value of cos90∘=0
The value of tan0∘=0
The value of tan30∘=31
The value of tan45∘=1
The value of tan60∘=3
The value of tan90∘ is not defined.