Question
Mathematics Question on Arithmetic Progression
If x=∑n=0∞an,y=∑n=0∞bn,z=∑n=0∞cn, where a, b, c are in A.P. and |a| < 1, |b| < 1, |c| < 1, abc≠ 0, then :
A
x, y, zare in A.P.
B
x, y, zare in G.P.
C
x1,y1,z1 are in A.P
D
x1+y1+z1=1−(a+b+c)
Answer
x1,y1,z1 are in A.P
Explanation
Solution
If x=∑n=0∞an,y=∑n=0∞bn,z=∑n=0∞cn= 1−c1
Now,
a,b,c→AP
1–a,1–b,1–c→AP
1−a1,1−b1,1−c1→HP
x,y,z→HP
⇒x1,y1,z1 are in A.P
Hence, the correct option is (C) : x1,y1,z1 are in A.P