Solveeit Logo

Question

Mathematics Question on Arithmetic Progression

If x=n=0an,y=n=0bn,z=n=0cnx=∑_{n=0}^∞a^n,y=∑_{n=0}^∞b^n,z=∑_{n=0}^∞c^n, where a, b, c are in A.P. and |a| < 1, |b| < 1, |c| < 1, abc≠ 0, then :

A

x, y, zare in A.P.

B

x, y, zare in G.P.

C

1x,1y,1z\frac{1}{x},\frac{1}{y},\frac{1}{z} are in A.P

D

1x+1y+1z=1(a+b+c)\frac{1}{x}+\frac{1}{y}+\frac{1}{z} = 1-(a+b+c)

Answer

1x,1y,1z\frac{1}{x},\frac{1}{y},\frac{1}{z} are in A.P

Explanation

Solution

If x=n=0an,y=n=0bn,z=n=0cnx=∑_{n=0}^∞a^n,y=∑_{n=0}^∞b^n,z=∑_{n=0}^∞c^n= 11c\frac{1}{1-c}

Now,

a,b,cAPa, b, c→ AP

1a,1b,1cAP1 – a, 1 – b, 1 – c→ AP

11a,11b,11cHP\frac{1}{1−a},\frac{1}{1−b},\frac{1}{1−c}→HP

x,y,zHPx, y, z→ HP

1x,1y,1z⇒ \frac{1}{x},\frac{1}{y},\frac{1}{z} are in A.PA.P

Hence, the correct option is (C) : 1x,1y,1z\frac{1}{x},\frac{1}{y},\frac{1}{z} are in A.P