Solveeit Logo

Question

Question: If \(x = \log_{a}(bc),y = \log_{b}(ca),z = \log_{c}(ab),\) then which of the following is equal to 1...

If x=loga(bc),y=logb(ca),z=logc(ab),x = \log_{a}(bc),y = \log_{b}(ca),z = \log_{c}(ab), then which of the following is equal to 1

A

x+y+zx + y + z

B

(1+x)1+(1+y)1+(1+z)1(1 + x)^{- 1} + (1 + y)^{- 1} + (1 + z)^{- 1}

C

xyzxyz

D

None of these

Answer

(1+x)1+(1+y)1+(1+z)1(1 + x)^{- 1} + (1 + y)^{- 1} + (1 + z)^{- 1}

Explanation

Solution

x=logabc1+x=logaa+logabc=logaabcx = \log_{a}bc \Rightarrow 1 + x = \log_{a}a + \log_{a}bc = \log_{a}abc

(1+x)1=logabca\therefore(1 + x)^{- 1} = \log_{abc}a

(1+x)1+(1+y)1+(1+z)1=logabca+logabcb+logabcc(1 + x)^{- 1} + (1 + y)^{- 1} + (1 + z)^{- 1} = \log_{abc}a + \log_{abc}b + \log_{abc}c

=logabcabc=1= \log_{abc}abc = 1.