Solveeit Logo

Question

Mathematics Question on Logarithmic Differentiation

If (x)=log(1+x1x),1(x)=\log \left( \frac{1+x}{1-x} \right),-1.

A

[f(x)]3{{[f(x)]}^{3}}

B

[f(x)]2{{[f(x)]}^{2}}

C

f(x)-f(x)

D

f(x)f(x)

Answer

f(x)f(x)

Explanation

Solution

The correct option is(D): f(x).

Given, f(x)=log(1+x1x)f(x)=\log \left( \frac{1+x}{1-x} \right)
\therefore f(3x+x31+3x2)f(2x1+x2)f\left( \frac{3x+{{x}^{3}}}{1+3{{x}^{2}}} \right)-f\left( \frac{2x}{1+{{x}^{2}}} \right)
=log(1+(3x+x31+3x2)1(3x+x31+3x2))log(1+2x1+x212x1+x2)=\log \left( \frac{1+\left( \frac{3x+{{x}^{3}}}{1+3x2} \right)}{1-\left( \frac{3x+{{x}^{3}}}{1+3{{x}^{2}}} \right)} \right)-\log \left( \frac{1+\frac{2x}{1+{{x}^{2}}}}{1-\frac{2x}{1+{{x}^{2}}}} \right)
=log(1+x1x)3log(1+x1x)2=\log {{\left( \frac{1+x}{1-x} \right)}^{3}}-\log {{\left( \frac{1+x}{1-x} \right)}^{2}}
=log(1+x1x)=\log \left( \frac{1+x}{1-x} \right)
=f(x)=f(x)