Solveeit Logo

Question

Mathematics Question on Probability

If x=logabc,y=logbca,z=logcab,x = \log_a bc, y = \log_b ca, z = \log_c ab, then x1+x+y1+y+z1+z=\frac{x}{1+x} + \frac{y}{1+y} + \frac{z}{1+z } =

A

0

B

1

C

2

D

3

Answer

2

Explanation

Solution

x=logabc,y=logbca,z=logcabx=\log _{a} bc , y = \log _{b} ca ,z =\log _{c} ab
x=logbcloga,y=logcalogb,z=logablogc\Rightarrow x =\frac{\log bc}{\log a} , y = \frac{\log ca}{\log b} , z = \frac{\log ab}{\log c}
x1+x+y1+y+z1+z\therefore \, \frac{x}{1+x} + \frac{y}{1+y} + \frac{z}{1+z}
=logbcloga+logbc+logcalogb+logca+logablogc+logab= \frac{\log bc}{\log a + \log bc} + \frac{\log ca}{\log b+\log ca} + \frac{\log ab}{\log c +\log ab}
=logb+logcloga+logb+logc+logc+logalogb+logc+loga+loga+logblogc+loga+logb= \frac{\log b+\log c}{\log a +\log b +\log c} + \frac{\log c+\log a}{\log b+\log c+\log a} + \frac{\log a +\log b}{\log c+\log a+\log b}
=2(loga+logb+logc)loga+logb+logc=2= \frac{2\left(\log a+\log b+\log c\right)}{\log a+\log b+\log c} = 2