Solveeit Logo

Question

Question: If \[x = {\log _{0.75}}(\dfrac{{148}}{{111}})\] and \[y = \dfrac{{\cos (\dfrac{\pi }{4} - \theta ) -...

If x=log0.75(148111)x = {\log _{0.75}}(\dfrac{{148}}{{111}}) and y=cos(π4θ)cos(π4+θ)sin(2π3+θ)sin(2π3θ)y = \dfrac{{\cos (\dfrac{\pi }{4} - \theta ) - \cos (\dfrac{\pi }{4} + \theta )}}{{\sin (\dfrac{{2\pi }}{3} + \theta ) - \sin (\dfrac{{2\pi }}{3} - \theta )}} and xy=tanαx - y = \tan \alpha , Then find α.\alpha.

Explanation

Solution

Here we are going to solve the sum and find the value ofα\alpha , we need trigonometric identities to find the value.

**
**

Formula used:

logab=logba\log \dfrac{a}{b} = - \log \dfrac{b}{a}
sin(A+B)=sinAcosB+cosAsinB\sin (A + B) = \sin A\cos B + \cos A\sin B
cos(A+B)=cosAcosBsinAsinB\cos (A + B) = \cos A\cos B - \sin A\sin B
sin(AB)=sinAcosBcosAsinB\sin (A - B) = \sin A\cos B - \cos A\sin B
cos(AB)=cosAcosB+sinAsinB\cos (A - B) = \cos A\cos B + \sin A\sin B

Complete step by step answer:
It is given that, x=log0.75(148111)x = {\log _{0.75}}(\dfrac{{148}}{{111}}) and y=cos(π4θ)cos(π4+θ)sin(2π3+θ)sin(2π3θ)y = \dfrac{{\cos (\dfrac{\pi }{4} - \theta ) - \cos (\dfrac{\pi }{4} + \theta )}}{{\sin (\dfrac{{2\pi }}{3} + \theta ) - \sin (\dfrac{{2\pi }}{3} - \theta )}} and xy=tanαx - y = \tan \alpha ,
First, we consider the term to solve it for a simple value,
x=log0.75(148111)x = {\log _{0.75}}(\dfrac{{148}}{{111}})
We have to simplify the above equation then we get,
x=log75100(37×437×3)x = {\log _{\dfrac{{75}}{{100}}}}(\dfrac{{37 \times 4}}{{37 \times 3}})
Further we have to eliminate same term from the numerator and denominator so that we can get the following equation,
x=log34(43)x = {\log _{\dfrac{3}{4}}}(\dfrac{4}{3})
By the property of logarithmlogab=logba\log \dfrac{a}{b} = - \log \dfrac{b}{a} ,
x=log34(34)x = - {\log _{\dfrac{3}{4}}}(\dfrac{3}{4})
We also know that if the base and the power of a logarithm is same, its value will be one, which is nothing but the following property logaa=1{\log _a}a = 1,
x=1x = - 1
Now, we consider the term y and solve it further,
y=cos(π4θ)cos(π4+θ)sin(2π3+θ)sin(2π3θ)y = \dfrac{{\cos (\dfrac{\pi }{4} - \theta ) - \cos (\dfrac{\pi }{4} + \theta )}}{{\sin (\dfrac{{2\pi }}{3} + \theta ) - \sin (\dfrac{{2\pi }}{3} - \theta )}}
Applying the trigonometric identities we have the equation rewritten as follows,
y=[cosπ4cosθ+sinπ4sinθ][cosπ4cosθsinπ4sinθ][sin2π3cosθ+cos2π3sinθ][sin2π3cosθcos2π3sinθ]y = \dfrac{{[\cos \dfrac{\pi }{4}\cos \theta + \sin \dfrac{\pi }{4}\sin \theta ] - [\cos \dfrac{\pi }{4}\cos \theta - \sin \dfrac{\pi }{4}\sin \theta ]}}{{[\sin \dfrac{{2\pi }}{3}\cos \theta + \cos \dfrac{{2\pi }}{3}\sin \theta ] - [\sin \dfrac{{2\pi }}{3}\cos \theta - \cos \dfrac{{2\pi }}{3}\sin \theta ]}}
Now let us simplify the addition and subtraction in the above equation, we get,
y=cosπ4cosθ+sinπ4sinθcosπ4cosθ+sinπ4sinθsin2π3cosθ+cos2π3sinθsin2π3cosθ+cos2π3sinθy = \dfrac{{\cos \dfrac{\pi }{4}\cos \theta + \sin \dfrac{\pi }{4}\sin \theta - \cos \dfrac{\pi }{4}\cos \theta + \sin \dfrac{\pi }{4}\sin \theta }}{{\sin \dfrac{{2\pi }}{3}\cos \theta + \cos \dfrac{{2\pi }}{3}\sin \theta - \sin \dfrac{{2\pi }}{3}\cos \theta + \cos \dfrac{{2\pi }}{3}\sin \theta }}
On further solving the above equation we get,
y=2sinπ4sinθ2cos2π3sinθy = \dfrac{{2\sin \dfrac{\pi }{4}\sin \theta }}{{2\cos \dfrac{{2\pi }}{3}\sin \theta }}
Let us eliminate the similar terms from the numerator and denominator we get,
y=sinπ4sinθcos2π3sinθy = \dfrac{{\sin \dfrac{\pi }{4}\sin \theta }}{{\cos \dfrac{{2\pi }}{3}\sin \theta }}
Now let us substitute the values of sinπ4=2,cos2π3=12,\sin \dfrac{\pi }{4} = \sqrt 2 ,\cos \dfrac{{2\pi }}{3} = - \dfrac{1}{2},in the above equation, we get,
y=1212y = \dfrac{{\dfrac{1}{{\sqrt 2 }}}}{{\dfrac{{ - 1}}{2}}}
Let us simplify the equation which we derived above, we get the value of y as,
y=2y = - \sqrt 2
From the given condition we know that
xy=tanαx - y = \tan \alpha
Let us now substitute the values of x=1x = - 1 and y=2y = - \sqrt 2 in the above equation, we get,
tanα=21\tan \alpha = \sqrt 2 - 1
We know that the value of tanπ8=21\tan \dfrac{\pi }{8} = \sqrt 2 - 1
So, α=π8\alpha = \dfrac{\pi }{8}
Hence,

Therefore, The value of α=π8\alpha = \dfrac{\pi }{8}.

Note:
Here is the calculation for tanπ8\tan \dfrac{\pi }{8}
We know that, tan2θ=2tanθ1tan2θ\tan 2\theta = \dfrac{{2\tan \theta }}{{1 - {{\tan }^2}\theta }}
Let us take, tanπ8=x\tan \dfrac{\pi }{8} = x
Now, tanπ4=2tanπ81tan2π8\tan \dfrac{\pi }{4} = \dfrac{{2\tan \dfrac{\pi }{8}}}{{1 - {{\tan }^2}\dfrac{\pi }{8}}}
Substitute the value in the above equation we get,
1=2x1x21 = \dfrac{{2x}}{{1 - {x^2}}}
On solving the above equation we get,
x2+2x1=0{x^2} + 2x - 1 = 0
(Sreedhar Acharya’s formula: for a quadratic equation ax2+bx+c=0a{x^2} + bx + c = 0 the root is found using the formula x=b±b24ac2ax = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}})
Now applying the formula mentioned above we get,
x=2±4+42x = \dfrac{{ - 2 \pm \sqrt {4 + 4} }}{2}
We will consider the positive value,
x=2+82=21x = \dfrac{{ - 2 + \sqrt 8 }}{2} = \sqrt 2 - 1
So, the value of tanπ8=21\tan \dfrac{\pi }{8} = \sqrt 2 - 1