Question
Question: If (x) = \(\lim_{n \rightarrow \infty}\)n<sup>2</sup> (x<sup>1/n</sup> – x<sup>1/(n+1)</sup>), x \>...
If (x) = limn→∞n2 (x1/n – x1/(n+1)), x > 0 then ∫x(x) dx is equal to –
A
x2/2
B
0
C
x2 log x – 21x2+ c
D
None
Answer
None
Explanation
Solution
(x) =limn→∞n2 (x1/(n+1))
=
n(n+1)1×n2n(n+1)x(n+1)1(xn(n+1)1−1) = log x.
Hence (x) dx = ∫xlog x dx = 2x2log
x – 41x2 + c.