Solveeit Logo

Question

Question: If ƒ(x) = \(\lim_{n \rightarrow \infty}\)n<sup>2</sup> (x<sup>1/n</sup> – x<sup>1/(n+1)</sup>), x \>...

If ƒ(x) = limn\lim_{n \rightarrow \infty}n2 (x1/n – x1/(n+1)), x > 0 then x\int_{}^{}xƒ(x) dx is equal to –

A

x2/2

B

0

C

x2 log x – 12x2\frac{1}{2}x^{2}+ c

D

None

Answer

None

Explanation

Solution

ƒ(x) =limn\lim_{n \rightarrow \infty}n2 (x1/(n+1))

=x1(n+1)(x1n(n+1)1)1n(n+1)×n(n+1)n2\frac{x^{\frac{1}{(n + 1)}}\left( x^{\frac{1}{n(n + 1)}} - 1 \right)}{\frac{1}{n(n + 1)} \times \frac{n(n + 1)}{n^{2}}} = log x.

Hence ƒ(x) dx = x\int_{}^{}xlog x dx = x22\frac{x^{2}}{2}log

x – 14\frac{1}{4}x2 + c.