Solveeit Logo

Question

Question: If \(x = \left( {\dfrac{{1 - \sqrt y }}{{1 + \sqrt y }}} \right),\) then \(\dfrac{{dy}}{{dx}}\) is e...

If x=(1y1+y),x = \left( {\dfrac{{1 - \sqrt y }}{{1 + \sqrt y }}} \right), then dydx\dfrac{{dy}}{{dx}} is equal to ;
(1)4(x+1)2\left( 1 \right)\dfrac{4}{{{{\left( {x + 1} \right)}^2}}}
(2)4(x1)(x+1)3\left( 2 \right)\dfrac{{4\left( {x - 1} \right)}}{{{{\left( {x + 1} \right)}^3}}}
(3)(x1)(x+1)3\left( 3 \right)\dfrac{{\left( {x - 1} \right)}}{{{{\left( {x + 1} \right)}^3}}}
(4)4(x+1)3\left( 4 \right)\dfrac{4}{{{{\left( {x + 1} \right)}^3}}}

Explanation

Solution

This question requires the knowledge of basic derivative formulae and algebraic identities. We have to calculate dydx\dfrac{{dy}}{{dx}} which determines the rate of change of yy with respect to xx . Here the independent variable is xx and yy is the dependent variable. But we are given the value of xx in terms of yy i.e. x=(1y1+y),x = \left( {\dfrac{{1 - \sqrt y }}{{1 + \sqrt y }}} \right), so first we will get the expression of yy in terms of xx and then we will differentiate it with respect to xx .

Complete step by step solution:
The given expression is ;
x=(1y1+y)\Rightarrow x = \left( {\dfrac{{1 - \sqrt y }}{{1 + \sqrt y }}} \right)
But we have to calculate dydx\dfrac{{dy}}{{dx}} , so we need to get y in terms of xy{\text{ in terms of }}x from the given expression;
By cross multiplying the given expression;
x(1+y)=(1y)\Rightarrow x\left( {1 + \sqrt y } \right) = \left( {1 - \sqrt y } \right)
x+xy=1y\Rightarrow x + x\sqrt y = 1 - \sqrt y
Taking the y\sqrt y terms to the L.H.S. ;
xy+y=1x\Rightarrow x\sqrt y + \sqrt y = 1 - x
Taking y\sqrt y common on L.H.S. ;
y(x+1)=1x\Rightarrow \sqrt y \left( {x + 1} \right) = 1 - x
Since we have to calculate the value of yy in terms of xx , therefore taking all the xx terms to the R.H.S. ;
y=1x1+x\Rightarrow \sqrt y = \dfrac{{1 - x}}{{1 + x}}
Taking square root on both the sides of the equation;
(y can also be written as y12)\left( {\because \sqrt y {\text{ can also be written as }}{{\text{y}}^{\dfrac{1}{2}}}} \right)
(y12)2=(1x1+x)2\Rightarrow {\left( {{y^{\dfrac{1}{2}}}} \right)^2} = {\left( {\dfrac{{1 - x}}{{1 + x}}} \right)^2}
The above equation can also be written as;
y=(1x)2(1+x)2 ......(1)\Rightarrow y = \dfrac{{{{\left( {1 - x} \right)}^2}}}{{{{\left( {1 + x} \right)}^2}}}{\text{ }}......\left( 1 \right)
Now, differentiating equation (1)\left( 1 \right) with respect to xx , we get;
By the quotient or division rule of differentiation;
ddx(uv)=(dudx×v)(u×dvdx)v2 ......(2)\Rightarrow \dfrac{d}{{dx}}\left( {\dfrac{u}{v}} \right) = \dfrac{{\left( {\dfrac{{du}}{{dx}} \times v} \right) - \left( {u \times \dfrac{{dv}}{{dx}}} \right)}}{{{v^2}}}{\text{ }}......\left( 2 \right)
Let u=(1x)2u = {\left( {1 - x} \right)^2} and v=(1+x2)v = \left( {1 + {x^2}} \right)
dudx=ddx(1x)2\Rightarrow \dfrac{{du}}{{dx}} = \dfrac{d}{{dx}}{\left( {1 - x} \right)^2}
dudx=2(1x)×(1) ......(3)\Rightarrow \dfrac{{du}}{{dx}} = 2\left( {1 - x} \right) \times \left( { - 1} \right){\text{ }}......\left( 3 \right)
Now, let us calculate dvdx\dfrac{{dv}}{{dx}} ;
dvdx=ddx(1+x)2\Rightarrow \dfrac{{dv}}{{dx}} = \dfrac{d}{{dx}}{\left( {1 + x} \right)^2}
dvdx=2(1+x) ......(4)\Rightarrow \dfrac{{dv}}{{dx}} = 2\left( {1 + x} \right){\text{ }}......\left( 4 \right)
Put the values of dudx and dvdx\dfrac{{du}}{{dx}}{\text{ and }}\dfrac{{dv}}{{dx}} in equation (2)\left( 2 \right) , we get;
dydx=ddx((1x)2(1+x)2)=(2(1x)×(1+x)2)((1x)2×2(1+x))((1+x)2)2\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}\left( {\dfrac{{{{\left( {1 - x} \right)}^2}}}{{{{\left( {1 + x} \right)}^2}}}} \right) = \dfrac{{\left( { - 2\left( {1 - x} \right) \times {{\left( {1 + x} \right)}^2}} \right) - \left( {{{\left( {1 - x} \right)}^2} \times 2\left( {1 + x} \right)} \right)}}{{{{\left( {{{\left( {1 + x} \right)}^2}} \right)}^2}}}
Simplifying the above equation;
dydx=2(x1)×(1+x)2(x1)2×2(1+x)(1+x)4\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{2\left( {x - 1} \right) \times {{\left( {1 + x} \right)}^2} - {{\left( {x - 1} \right)}^2} \times 2\left( {1 + x} \right)}}{{{{\left( {1 + x} \right)}^4}}}
Taking 2(1+x)(x1)2\left( {1 + x} \right)\left( {x - 1} \right) outside;
dydx=2(x1)(1+x)[(1+x)(1x)](1+x)4\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{2\left( {x - 1} \right)\left( {1 + x} \right)\left[ {\left( {1 + x} \right) - \left( {1 - x} \right)} \right]}}{{{{\left( {1 + x} \right)}^4}}}
dydx=2(x1)(1+x)[(1+xx+1)](1+x)4\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{2\left( {x - 1} \right)\left( {1 + x} \right)\left[ {\left( {1 + x - x + 1} \right)} \right]}}{{{{\left( {1 + x} \right)}^4}}}
dydx=4(x1)(1+x)(1+x)4\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{4\left( {x - 1} \right)\left( {1 + x} \right)}}{{{{\left( {1 + x} \right)}^4}}}
dydx=4(x1)(1+x)3\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{4\left( {x - 1} \right)}}{{{{\left( {1 + x} \right)}^3}}}
Hence if x=(1y1+y),x = \left( {\dfrac{{1 - \sqrt y }}{{1 + \sqrt y }}} \right), then dydx=4(x1)(1+x)3\dfrac{{dy}}{{dx}} = \dfrac{{4\left( {x - 1} \right)}}{{{{\left( {1 + x} \right)}^3}}}
Therefore, the correct answer for this question is option (2)\left( 2 \right).

Note: The knowledge of standard derivative formulae is very useful for solving such type of questions. Some of most important and frequently used derivative rules are given below:
(1)\left( 1 \right) The power rule : ddxxn=nxn1\dfrac{d}{{dx}}{x^n} = n{x^{n - 1}} .
(2)\left( 2 \right) The addition rule: ddx(u±v)=dudx±dvdx\dfrac{d}{{dx}}\left( {u \pm v} \right) = \dfrac{{du}}{{dx}} \pm \dfrac{{dv}}{{dx}} .
(3)\left( 3 \right) Differentiation of a constant multiplied with a variable: ddx(cx)=cddxx=c\dfrac{d}{{dx}}\left( {cx} \right) = c\dfrac{d}{{dx}}x = c .
(4)\left( 4 \right) The multiplication rule: ddx(uv)=vdudx+udvdx\dfrac{d}{{dx}}\left( {uv} \right) = v\dfrac{{du}}{{dx}} + u\dfrac{{dv}}{{dx}} .
(5)\left( 5 \right) The division or quotient rule ddx(uv)=(dudx×v)(u×dvdx)v2\dfrac{d}{{dx}}\left( {\dfrac{u}{v}} \right) = \dfrac{{\left( {\dfrac{{du}}{{dx}} \times v} \right) - \left( {u \times \dfrac{{dv}}{{dx}}} \right)}}{{{v^2}}} .