Solveeit Logo

Question

Mathematics Question on Matrices

If x[3 4 ]+y[4 3 ]=[10 5 ],x\left[ \begin{matrix} -3 \\\ 4 \\\ \end{matrix} \right]+y\left[ \begin{matrix} 4 \\\ 3 \\\ \end{matrix} \right]=\left[ \begin{matrix} 10 \\\ -5 \\\ \end{matrix} \right], then

A

x=2,y=1x=-2,\,y=1

B

x=9,y=10x=-9,y=10

C

x=22,y=1x=22,y=1

D

x=2,y=1x=2,y=-1

Answer

x=2,y=1x=-2,\,y=1

Explanation

Solution

Given that, x[3 4 ]+y[4 3 ]=[10 5 ]x\left[ \begin{matrix} -3 \\\ 4 \\\ \end{matrix} \right]+y\left[ \begin{matrix} 4 \\\ 3 \\\ \end{matrix} \right]=\left[ \begin{matrix} 10 \\\ -5 \\\ \end{matrix} \right]
\therefore 3x+4y=10-3x+4y=10 ..(i)
and 4x+3y=54x+3y=-5 ..(ii)
On multiplying E (i) by 4 and E (ii) by 4 and then subtracting, we get
25x=50-25x=50
\Rightarrow x=2x=-2