Question
Question: If \(x + iy = \frac{3}{2 + \cos\theta + i\sin\theta},\) then the multiplicative inverse of z<sup>2</...
If x+iy=2+cosθ+isinθ3, then the multiplicative inverse of z2 is (where i = x2+y2).
A
2 i
B
1 – I
C
– i/2
D
i/2
Answer
– i/2
Explanation
Solution
Given b=−d) and (x+iy)(p+iq)=(x2+y2)i Squaring both sides, we get (xp−yq)+i(xq+yp)=(x2+y2)i or xp−yq=0,xq+yp=x2+y2
Since it is multiplicative identity, therefore multiplicative inverse of qx=py