Question
Mathematics Question on Complex Numbers and Quadratic Equations
ifx−iy=√c−ida−ib prove that (x2y2)2=c2+d2a2+b2.
Answer
x−iy=√c−ida−ib
=c−ida−ib×c−idc−ib [Onmultiplayingnumeratoranddenominatorby(c+id)]
=c2+d2(ac+bd)+i(ad−bc)
∴(x−iy)2=c2+d2(ac+bd)+i(ad−bc)
⇒x2−y2−2ixy=c2+d2(ac+bd)+i(ad−bc)
on comparing real and imaginary parts, we obtain
x2=y2=c2+d2ac+bd,−2xy=c2+d2ad−bc (1)
(x2+y2)2=(x2−y2)2+4x2y2
=(c2+d2ac+bd)+(c2+d2ad−bc) [Using(1)]
=(c2+d2)a2c2+b2d2+2acbd+a2d2+b2c2−2adbc
=(c2+d2)a2c2+b2d2+a2d2+b2c2
=(c2+d2)2a2(c2+d2+b)+b2(c2+d2)
(c2+d2)2(c2+d2+b)(c2+d2)
=c2+b2a2+b2
Hence, proved.