Solveeit Logo

Question

Mathematics Question on Complex Numbers and Quadratic Equations

ifxiy=aibcidif\, x-iy=√\frac{a-ib}{c-id} prove that (x2y2)2=a2+b2c2+d2.(x^2y^2)^2=\frac{a^2+b^2}{c^2+d^2}.

Answer

xiy=aibcidx-iy=√\frac{a-ib}{c-id}

=aibcid×cibcid=\sqrt\frac{a-ib}{c-id}×\frac{c-ib}{c-id} [Onmultiplayingnumeratoranddenominatorby(c+id)][ On\, multiplaying numerator\,and\,denominator \,by(c+id)]

=(ac+bd)+i(adbc)c2+d2=\sqrt\frac{(ac+bd)+i(ad-bc)}{c^2+d^2}

(xiy)2=(ac+bd)+i(adbc)c2+d2(x-iy)^2=\frac{(ac+bd)+i(ad-bc)}{c^2+d^2}

x2y22ixy=(ac+bd)+i(adbc)c2+d2⇒x^2-y^2-2ixy=\frac{(ac+bd)+i(ad-bc)}{c^2+d^2}

on comparing real and imaginary parts, we obtain

x2=y2=ac+bdc2+d2,2xy=adbcc2+d2x^2=y^2=\frac{ac+bd}{c^2+d^2},-2xy=\frac{ad-bc}{c^2+d^2} (1)(1)

(x2+y2)2=(x2y2)2+4x2y2(x^2+y^2)^2=(x^2-y^2)^2+4x^2y^2

=(ac+bdc2+d2)+(adbcc2+d2)=(\frac{ac+bd}{c^2+d^2})+(\frac{ad-bc}{c^2+d^2}) [Using(1)][Using\,(1)]

=a2c2+b2d2+2acbd+a2d2+b2c22adbc(c2+d2)=\frac{a^2c^2+b^2d^2+2acbd+a^2d^2+b^2c^2-2adbc}{(c^2+d^2)}

=a2c2+b2d2+a2d2+b2c2(c2+d2)=\frac{a^2c^2+b^2d^2+a^2d^2+b^2c^2}{(c^2+d^2)}

=a2(c2+d2+b)+b2(c2+d2)(c2+d2)2=\frac{a^2(c^2+d^2+b)+b^2(c^2+d^2)}{(c^2+d^2)^2}

(c2+d2+b)(c2+d2)(c2+d2)2\frac{(c^2+d^2+b)(c^2+d^2)}{(c^2+d^2)^2}

=a2+b2c2+b2=\frac{a^2+b^2}{c^2+b^2}

Hence, proved.