Solveeit Logo

Question

Mathematics Question on complex numbers

If x+iy=1(1+cosθ)+isinθx+iy=\dfrac{1}{(1+cosθ)+isinθ},then the value of x2+1x^2+1 is ?

A

74\dfrac{7}{4}

B

134\dfrac{13}{4}

C

14\dfrac{1}{4}

D

94\dfrac{9}{4}

E

54\dfrac{5}{4}

Answer

54\dfrac{5}{4}

Explanation

Solution

Given that:

x+iy=1/(1+cosθ)+isinθx+iy=1/(1+cosθ)+isinθ

=11+2cos2(θ/2)+i.2sin(θ/2).cos(θ/2)=\dfrac{1}{1+2cos^2(θ/2)+i.2sin(θ/2).cos(θ/2)}

=11+2cos2(θ/2).1ei.(θ/2)=\dfrac{1}{1+2cos^2(θ/2)}.\dfrac{1}{e^{i.(θ/2)}}

=11+2cos2(θ/2).ei.(θ/2)=\dfrac{1}{1+2cos^2(θ/2)}.e^{-i.(θ/2)}

=11+2cos2(θ/2).(cos(θ/2)isin(θ/2))=\dfrac{1}{1+2cos^2(θ/2)}.(cos(θ/2)-isin(θ/2))

=12itan(θ/2)=\dfrac{1}{2}-itan(θ/2)

Hence, now we can write that x=12x=\dfrac{1}{2}

So, x2+1=(12)2+1=54x^2+1=(\dfrac{1}{2})^2+1=\dfrac{5}{4} (_Ans.)