Question
Mathematics Question on Complex Numbers and Quadratic Equations
If (x+iy)3=u+iv, then show that xu+yv=4(x2−y2).
Answer
(x+iy)3)=u+iv
⇒x3+(iy)3+3.x.iy(x+iy)=u+iv
⇒x3+i3+3x2yi+3xy2i2=u+iv
⇒x3−iy3+3x2yi−3xy2=u+iv
⇒(x3−3xy2)+(3x2y−y3)=u+iv
On equating real and imaginary parts, we obtain
u=x3=3xy2,v=3x2y−y3
∴xu+yv=xx3−3xy2+y3x2y−y3
=xx(x2−3y2)+yy(3x2−y2)
=x2−3y2+3x2−y2
=4x2−4y2
=4(x2−y2)
∴xu+yv=4(x2−y2)
Hence, proved.