Solveeit Logo

Question

Mathematics Question on Complex Numbers and Quadratic Equations

If (x+iy)3=u+iv,(x+iy) ^3=u+iv, then show that ux+vy=4(x2y2).\frac{u}{x}+\frac{v}{y}=4(x^2-y^2).

Answer

(x+iy)3)=u+iv(x+iy)^3)=u+iv

x3+(iy)3+3.x.iy(x+iy)=u+iv⇒x^3+(iy)^3+3.x.iy(x+iy)=u+iv

x3+i3+3x2yi+3xy2i2=u+iv⇒x^3+i^3+3x^2yi+3xy^2i^2=u+iv

x3iy3+3x2yi3xy2=u+iv⇒x^3-iy^3+3x^2yi-3xy^2=u+iv

(x33xy2)+(3x2yy3)=u+iv⇒(x^3-3xy^2)+(3x^2y-y^3)=u+iv

On equating real and imaginary parts, we obtain

u=x3=3xy2,v=3x2yy3u=x^3=3xy^2,v=3x^2y-y^3

ux+vy=x33xy2x+3x2yy3y∴\frac{u}{x}+\frac{v}{y}=\frac{x^3-3xy^2}{x}+\frac{3x^2y-y^3}{y}

=x(x23y2)x+y(3x2y2)y=\frac{x(x^2-3y^2)}{x}+\frac{y(3x^2-y^2)}{y}

=x23y2+3x2y2=x^2-3y^2+3x^2-y^2

=4x24y2=4x^2-4y^2

=4(x2y2)=4(x^2-y^2)

ux+vy=4(x2y2)∴ \frac{u}{x}+\frac{v}{y}=4(x^2-y^2)

Hence, proved.