Solveeit Logo

Question

Question: If ( x + iy )( 3 – 4i ) = 5 + 12i, then find the value \(\sqrt{{{x}^{2}}+{{y}^{2}}}\)....

If ( x + iy )( 3 – 4i ) = 5 + 12i, then find the value x2+y2\sqrt{{{x}^{2}}+{{y}^{2}}}.

Explanation

Solution

Hint: First we will multiply the two complex numbers and write it in the form of a + ib and then we will compare it with the right hand side of the equation and after that we find the value of x and y after that we will put it in the given equation to find it’s value.

Complete step-by-step answer:
So, let’s start by multiplying the two complex number,
(x+iy)(34i) =(3x4xi+3yi+4y) =(3x+4y)+(3y4x)i \begin{aligned} & \left( x+iy \right)\left( 3-4i \right) \\\ & =\left( 3x-4xi+3yi+4y \right) \\\ & =\left( 3x+4y \right)+\left( 3y-4x \right)i \\\ \end{aligned}
Now we have converted it in the form of a + ib,
Now we will compare it with 5 + 12i.
Therefore, after comparing we get,
(3x+4y)=5 .............. (1) (3y4x)=12 .............. (2) \begin{aligned} & \left( 3x+4y \right)=5\text{ }..............\text{ (1)} \\\ & \left( 3y-4x \right)=12\text{ }..............\text{ (2)} \\\ \end{aligned}
Now we will solve this two equations to find out the value of x and y:
Multiplying equation (1) by 4 and multiplying equation (2) by 3 and then adding them we get,
(12x+16y)+(9y12x)=20+36 25y=56 y=5625 \begin{aligned} & \left( 12x+16y \right)+\left( 9y-12x \right)=20+36 \\\ & 25y=56 \\\ & y=\dfrac{56}{25} \\\ \end{aligned}
Now putting this in equation (2) we get,
4x=3y12 4x=3(5625)12 x=42253 x=3325 \begin{aligned} & 4x=3y-12 \\\ & 4x=3\left( \dfrac{56}{25} \right)-12 \\\ & x=\dfrac{42}{25}-3 \\\ & x=\dfrac{33}{25} \\\ \end{aligned}
Now we have calculated both the values of x and y,
Now we will substitute these values in x2+y2\sqrt{{{x}^{2}}+{{y}^{2}}}.
Hence, it’s value is:
=(5625)2+(3325)2 =562+33225 =6525 =135 \begin{aligned} & =\sqrt{{{\left( \dfrac{56}{25} \right)}^{2}}+{{\left( \dfrac{33}{25} \right)}^{2}}} \\\ & =\dfrac{\sqrt{{{56}^{2}}+{{33}^{2}}}}{25} \\\ & =\dfrac{65}{25} \\\ & =\dfrac{13}{5} \\\ \end{aligned}
Hence, the answer to this question is 135\dfrac{13}{5}.

Note: To solve this question one should be able to write any combination of complex numbers in the form of a + ib. While comparing one should be careful to choose which is the shortest way to solve those two equations to get the values of x and y.