Solveeit Logo

Question

Mathematics Question on Applications of Determinants and Matrices

If [x][x] is the greatest integer less than or equal to xx and x|x| is the modulus of xx. then the system of three equations 2x+3y+5[z]=0,x+y2[z]=4,x+y+z=12x + 3 | y | + 5[z] = 0, x + |y| - 2[z] = 4, x + |y| + |z| = 1 has

A

a unique solution

B

finitely many solutions

C

infinitely many solutions

D

no solution

Answer

infinitely many solutions

Explanation

Solution

Given system of three equations
2x+3y+5[z]=02 x+3|y|+5[z]=0
x+y2[z]=4x+|y|-2[z]=4
and x+y+[z]=1x+|y|+[z]=1
According to Cramer's rule,
x=Δ1Δ,y=Δ2Δx=\frac{\Delta_{1}}{\Delta},|y|=\frac{\Delta_{2}}{\Delta}
and [z]=Δ3Δ[z]=\frac{\Delta_{3}}{\Delta}
where, Δ=235 112 111\Delta =\begin{vmatrix}2 & 3 & 5 \\\ 1 & 1 & -2 \\\ 1 & 1 & 1\end{vmatrix} =2(1+2)3(1+2)+5(11)=3=2(1+2)-3(1+2)+5(1-1)=-3
Δ1=035 412 111\Delta_{1} =\begin{vmatrix}0 & 3 & 5 \\\ 4 & 1 & -2 \\\ 1 & 1 & 1\end{vmatrix} =0(1+2)3(4+2)+5(41)=0(1+2)-3(4+2)+5(4-1)
=18+15=3=-18+15=-3
Δ2=205 142 111\Delta_{2} =\begin{vmatrix}2 & 0 & 5 \\\ 1 & 4 & -2 \\\ 1 & 1 & 1\end{vmatrix}
=2(4+2)0(1+2)+5(14)=3=2(4+2)-0(1+2)+5(1-4)=-3
and Δ3=230 114 111\Delta_{3}=\begin{vmatrix}2 & 3 & 0 \\\ 1 & 1 & 4 \\\ 1 & 1 & 1\end{vmatrix}
=2(14)3(14)+0(11)=3=2(1-4)-3(1-4)+0(1-1)=3
Now, x=33=1,y=33=1x=\frac{-3}{-3}=1,|y|=\frac{-3}{-3}=1
and [z]=33=1[z]=\frac{-3}{3}=-1
x=1,y=1\therefore x=1,|y|=1
y=±1\Rightarrow y=\pm 1 and [z]=1[z]=-1
z[1,0)\Rightarrow z \in[-1,0)
So, the given system of three equations has infinitely many solution.