Solveeit Logo

Question

Question: If x is so small that x<sup>2</sup> and higher powers can be neglected, then \(\frac{(1 + 3x/4)^{- 4...

If x is so small that x2 and higher powers can be neglected, then (1+3x/4)4(163x)1/2(8+x)2/3\frac{(1 + 3x/4)^{- 4}(16 - 3x)^{1/2}}{(8 + x)^{2/3}}equals –

A

1 – 30596\frac{305}{96}x

B

1 + 30596\frac{305}{96}x

C

12\frac{1}{2}+ 78\frac{7}{8}x

D

None

Answer

1 – 30596\frac{305}{96}x

Explanation

Solution

(1+3x4)4(163x)1/2(8+x)2/3\frac{\left( 1 + \frac{3x}{4} \right)^{- 4}(16 - 3x)^{1/2}}{(8 + x)^{2/3}}

=(1+(4)(3x4))(16)1/2(13x16)1/282/3(1+x8)2/3\frac{\left( 1 + ( - 4)\left( \frac{3x}{4} \right) \right)(16)^{1/2}\left( 1 - \frac{3x}{16} \right)^{1/2}}{8^{2/3}\left( 1 + \frac{x}{8} \right)^{2/3}}

= (13x)4(1+12(3x16))(1+x8)2/34\frac{(1 - 3x)4\left( 1 + \frac{1}{2}\left( - \frac{3x}{16} \right) \right)\left( 1 + \frac{x}{8} \right)^{- 2/3}}{4}

= (1–3x) (1+(23)(x8))\left( 1 + \left( - \frac{2}{3} \right)\left( \frac{x}{8} \right) \right)

= (1x12)\left( 1 - \frac{x}{12} \right)= (19932x)\left( 1 - \frac { 99 } { 32 } x \right) (1x12)\left( 1 - \frac{x}{12} \right)

= 1–(9932)\left( \frac{99}{32} \right)x – x12\frac{x}{12}+ 0 = 1 – 30596\frac{305}{96}x.