Solveeit Logo

Question

Mathematics Question on Binomial theorem

If xx is so small that x3x^3 and higher powers of xx may be neglected, then (1+x)32(1+12x)3(1x)12\frac{\left(1+x\right)^{\frac{3}{2}} - \left(1+ \frac{1}{2}x\right)^{3}}{\left(1-x\right)^{\frac{1}{2}}} may be approximated as

A

138x2 1 - \frac{3}{8} x^2

B

3x+38x2 3x + \frac{3}{8} x^2

C

38x2 - \frac{3}{8} x^2

D

x238x2 \frac{x}{2} - \frac{3}{8} x^2

Answer

38x2 - \frac{3}{8} x^2

Explanation

Solution

x3\because \, x^3 and higher powers of x may be neglected (1+x)32(1+x2)3(1x12)\therefore \frac{\left(1+x\right) \frac{3}{2} -\left(1+\frac{x}{2}\right)^{3}}{\left(1-x^{\frac{1}{2}}\right)} =(1x)12[(1+32x+32.122!x2)(1+3x2+3.22!x24)]=\left(1-x\right)^{\frac{-1}{2}} \left[\left(1+\frac{3}{2} x + \frac{\frac{3}{2}. \frac{1}{2}}{2!} x^{2}\right) - \left(1+ \frac{3x}{2} + \frac{3.2}{2!} \frac{x^{2}}{4}\right)\right] =[1+x2+12.322!x2][38x2]=38x2= \left[1+ \frac{x}{2} + \frac{\frac{1}{2} . \frac{3}{2}}{2!}x^{2}\right] \left[ \frac{-3}{8} x^{2}\right] = \frac{-3}{8} x^{2} (as x3x^3 and higher powers of x can be neglected)