Solveeit Logo

Question

Question: If x is so small that its square and higher powers may be neglected, then the value of \(\frac{(8 + ...

If x is so small that its square and higher powers may be neglected, then the value of (8+3x)2/3(2+3x)(45x)1/2\frac{(8 + 3x)^{2/3}}{(2 + 3x)(4 - 5x)^{1/2}} is –

A

1 – 32\frac{3}{2}x

B

1 + 58\frac{5}{8}x

C

1 – 58\frac{5}{8}x

D

None

Answer

1 – 58\frac{5}{8}x

Explanation

Solution

We have, (8+3x)2/3(2+3x)(45x)\frac{(8 + 3x)^{2/3}}{(2 + 3x)\sqrt{(4 - 5x)}}

= 82/3(1+3x8)2/32(1+32x)2(15x4)\frac{8^{2/3}\left( 1 + \frac{3x}{8} \right)^{2/3}}{2\left( 1 + \frac{3}{2}x \right)2\sqrt{\left( 1 - \frac{5x}{4} \right)}}

= (1+3x8)2/3\left( 1 + \frac{3x}{8} \right)^{2/3} (1+32x)1\left( 1 + \frac { 3 } { 2 } x \right) ^ { - 1 } (15x4)1/2\left( 1 - \frac{5x}{4} \right)^{- 1/2}

= (1+233x8+...)\left( 1 + \frac{2}{3} \cdot \frac{3x}{8} + ... \right) (132x+)\left( 1 - \frac { 3 } { 2 } x + \ldots \right) (1+58x+...)\left( 1 + \frac{5}{8}x + ... \right)

= 1 + (1432+58)\left( \frac{1}{4} - \frac{3}{2} + \frac{5}{8} \right)x = 1 – 58\frac{5}{8}x.