Solveeit Logo

Question

Question: If x is real, then greatest and least values of \(\frac{x^{2} - x + 1}{x^{2} + x + 1}\) are...

If x is real, then greatest and least values of x2x+1x2+x+1\frac{x^{2} - x + 1}{x^{2} + x + 1} are

A

3, –1/2

B

3, 1/3

C

– 3, –1/3

D

None of these

Answer

3, 1/3

Explanation

Solution

Let y=x2x+1x2+x+1y = \frac{x^{2} - x + 1}{x^{2} + x + 1}

x2(y1)+(y+1)x+(y1)=0x^{2}(y - 1) + (y + 1)x + (y - 1) = 0

∵ x is real, therefore b24ac0b^{2} - 4ac \geq 0

(y+1)24(y1)(y1)0(y + 1)^{2} - 4(y - 1)(y - 1) \geq 03y210y+303y^{2} - 10y + 3 \leq 0

(3y1)(y3)0(3y - 1)(y - 3) \leq 0(y13)(y3)0\left( y - \frac{1}{3} \right)(y - 3) \leq 013y3\frac{1}{3} \leq y \leq 3

Thus greatest and least values of expression are 3, 1/3 respectively.