Solveeit Logo

Question

Mathematics Question on Complex Numbers and Quadratic Equations

If x is real, the maximum value of 3x2+9x+173x2+9x+7\frac{3x^2 + 9x + 17}{3x^2 + 9x + 7} is

A

14\frac{1}{4}

B

41

C

1

D

177\frac{17}{7}

Answer

41

Explanation

Solution

y=3x2+9x+173x2+9x+7y = \frac{3x^{2} + 9x + 17}{3x^{2} + 9x +7} 3x2(y1)+9x(y1)+7y17=03x^{2} \left(y -1\right)+9x\left(y-1\right)+7y -17 = 0 D0xD \ge 0 \,\,\,\because\, x is real 81(y1)24×3(y1)(7y17)081\left(y-1\right)^{2} - 4 \times 3\left(y - 1\right)\left(7y - 17\right) \ge 0 (y1)(y41)01y41\Rightarrow \left( y -1\right)\left( y - 41\right) \le 0 \Rightarrow 1\le y \le 41 \therefore Max value of yy is 4141