Solveeit Logo

Question

Mathematics Question on Quadratic Equations

If xx is real number, then xx25x+9\frac{x}{x^{2}-5 x+9} must lie between

A

111\frac{1}{11} and 11

B

1-1 and 111\frac{1}{11}

C

11-11 and 11

D

111- \frac{1}{11} and 11

Answer

111- \frac{1}{11} and 11

Explanation

Solution

Let y=xx25x+9y=\frac{x}{x^{2}-5 x+9}
x2y5xy+9y=x\Rightarrow x^{2} y-5 x y+9 y=x
x2y(5y+1)x+9y=0\Rightarrow x^{2} y-(5 y+1) x+9 y=0
For real, discriminant 0\geq 0
(5y+1)236y20\Rightarrow(5 y+1)^{2}-36 y^{2} \geq 0
25y2+10y+136y20\Rightarrow 25 y ^{2}+10 y +1-36 y ^{2} \geq 0
11y2+10y+10\Rightarrow-11 y ^{2}+10 y +1 \geq 0
11y210y10\Rightarrow 11 y ^{2}-10 y -1 \leq 0
11y211y+y10\Rightarrow 11 y ^{2}-11 y + y -1 \leq 0
11y(y1)+1(y1)0\Rightarrow 11 y ( y -1)+1( y -1) \leq 0
(y1)(11y+1)0\Rightarrow( y -1)(11 y +1) \leq 0
y[111,1]\Rightarrow y \in\left[\frac{-1}{11}, 1\right]