Solveeit Logo

Question

Question: If x is real and y = \(\frac{x^{2} - x + 3}{x + 2}\), then...

If x is real and y = x2x+3x+2\frac{x^{2} - x + 3}{x + 2}, then

A

y ≥ 10

B

y ≥ 11

C

y ≤ –11 or y ≥ 1

D

–11 < y < 1

Answer

y ≤ –11 or y ≥ 1

Explanation

Solution

y = x2x+3x+2\frac{x^{2} - x + 3}{x + 2}

xy + 2y = x2 – x + 3

x2 – x(1 + y) + 3 – 2y = 0

Q x ∈ R

∴ D ≥ 0

(1 + y)2 – 4 (3 – 2y) ≥ 0

y2 + 2y + 1 – 12 + 8y ≥ 0

y2 + 10y – 11 ≥ 0

(y + 11)(y – 1) ≥ 0

⇒ y ∈ (– ∞, –11] ∪ [1, ∞)