Question
Question: If x is real and y = \(\frac{x^{2} - x + 3}{x + 2}\), then...
If x is real and y = x+2x2−x+3, then
A
y ≥ 10
B
y ≥ 11
C
y ≤ –11 or y ≥ 1
D
–11 < y < 1
Answer
y ≤ –11 or y ≥ 1
Explanation
Solution
y = x+2x2−x+3
xy + 2y = x2 – x + 3
x2 – x(1 + y) + 3 – 2y = 0
Q x ∈ R
∴ D ≥ 0
(1 + y)2 – 4 (3 – 2y) ≥ 0
y2 + 2y + 1 – 12 + 8y ≥ 0
y2 + 10y – 11 ≥ 0
(y + 11)(y – 1) ≥ 0
⇒ y ∈ (– ∞, –11] ∪ [1, ∞)