Solveeit Logo

Question

Question: If x is positive, show that \[\log (1 + x) < x\] and \[ > \dfrac{x}{{1 + x}}\]....

If x is positive, show that log(1+x)<x\log (1 + x) < x and >x1+x > \dfrac{x}{{1 + x}}.

Explanation

Solution

Hint:- Use expansions of (1+x)n{\left( {1 + x} \right)^{ - n}} and ex{{\text{e}}^x}.
As we know the expansion of ex{{\text{e}}^x} is,
ex=1+x+x22!+........+xnn!\Rightarrow {e^x} = 1 + x + \dfrac{{{x^2}}}{{2!}} + ........ + \dfrac{{{x^n}}}{{n!}} (1)
From equation 1. We can say that,
ex>1+x\Rightarrow {{\text{e}}^x} > 1 + x
Now, taking log both sides of the above equation. It becomes,
logex>log(1+x)\Rightarrow \log {e^x} > \log (1 + x) (2)
Solving above equation. It becomes,
1+x=(1x1+x)1\Rightarrow 1 + x = {\left( {1 - \dfrac{x}{{1 + x}}} \right)^{ - 1}} (3)
As we know the expansion of (1+y)1{(1 + y)^{ - 1}}.
(1+y)1=1y+y2y3+....... \Rightarrow {(1 + y)^{ - 1}} = 1 - y + {y^2} - {y^3} + .......{\text{ }} (4)
Now, putting the value of y = (x1+x){\text{y = }}\left( { - \dfrac{x}{{1 + x}}} \right) in equation 4. We get,
(1x1+x)1=1+x1+x+(x1+x)2+.....\Rightarrow {\left( {1 - \dfrac{x}{{1 + x}}} \right)^{ - 1}} = 1 + \dfrac{x}{{1 + x}} + {\left( {\dfrac{x}{{1 + x}}} \right)^2} + ..... (5)
And now putting the value of x=x1+xx = \dfrac{x}{{1 + x}} in equation 1. We get,
ex1+x=1+x1+x+(x1+x)22!+........+(x1+x)nn!\Rightarrow {e^{\dfrac{x}{{1 + x}}}} = 1 + \dfrac{x}{{1 + x}} + \dfrac{{{{\left( {\dfrac{x}{{1 + x}}} \right)}^2}}}{{2!}} + ........ + \dfrac{{{{\left( {\dfrac{x}{{1 + x}}} \right)}^n}}}{{n!}} (6)
From equation 3, 5 and 6. We can say that,
1+x>ex1+x\Rightarrow 1 + x > {e^{\dfrac{x}{{1 + x}}}}
Taking log both sides of the above equation. We get,
log(1+x)>logex1+x\Rightarrow \log (1 + x) > \log {e^{\dfrac{x}{{1 + x}}}}
As we know that, log(e)=1\log (e) = 1.
So, we can write above equation as,
log(1+x)>x1+x\Rightarrow \log (1 + x) > \dfrac{x}{{1 + x}} (7)
Therefore, from equation 2 and 7. We can say that,
x>log(1+x)>x1+x\Rightarrow x > \log (1 + x) > \dfrac{x}{{1 + x}}
Hence Proved.
Note:- Whenever we came up with this type of problem where log is
Involved, then we should use the expansion of ex{{\text{e}}^x}, (1+x)n,(1+x)n{\left( {1 + x} \right)^n},{\left( {1 + x} \right)^{ - n}} and
log(1+x)\log (1 + x) and then try to manipulate their expansions to get the required
result. As this will be the easiest and efficient way to prove the result.