Solveeit Logo

Question

Mathematics Question on binomial expansion formula

If xx is numerically so small so that x2x^{2} and higher powers of xx can be neglected, then (1+2x3)3/2(32+5x)1/5\left(1+\frac{2 x}{3}\right)^{3 / 2} \cdot(32+5 x)^{-1 / 5} is approximately equal to

A

32+31x64\frac{32+31 x}{64}

B

31+32x64\frac{31+32 x}{64}

C

3132x64\frac{31-32 x}{64}

D

12x64\frac{1-2 x}{64}

Answer

32+31x64\frac{32+31 x}{64}

Explanation

Solution

(1+2x3)3/2(32+5x)1/5\left(1+\frac{2 x}{3}\right)^{3 / 2}(32+5 x)^{-1 / 5}
=[1+32(2x3)](32)1/5(1+532x)1/5=\left[1+\frac{3}{2}\left(\frac{2 x}{3}\right)\right](32)^{-1 / 5}\left(1+\frac{5}{32} x\right)^{-1 / 5}
(Neglect higher powers of x)
=[1+x]21[115(532)x]=[1+x] 2^{-1}\left[1-\frac{1}{5}\left(\frac{5}{32}\right) x\right]
(Neglect higher powers of x)
=12(1+x)(1x32)=\frac{1}{2}(1+x)\left(1-\frac{x}{32}\right)
=(1+x)(32x)64=32+31x64=\frac{(1+x)(32-x)}{64}=\frac{32+31 x}{64}
(Neglect x2x^{2} term)