Solveeit Logo

Question

Question: If (x) is differentiable and strictly increasing function, then the value of \(\lim_{h \rightarrow 0...

If (x) is differentiable and strictly increasing function, then the value of limh0f(x2)f(x)f(x)f(0)\lim_{h \rightarrow 0}\frac{f\left( x^{2} \right) - f(x)}{f(x) - f(0)} is

A

1

B

0

C

−1

D

2

Answer

−1

Explanation

Solution

limx0f(x2)f(x)f(x)f(0)\lim_{x \rightarrow 0}\frac{f\left( x^{2} \right) - f(x)}{f(x) - f(0)}

Using L.H. Rule

limx0f(x2).2xf(x)f(x)=limx0f(x2).2xf(x)1=01=1\lim_{x \rightarrow 0}\frac{f'\left( x^{2} \right).2x - f'(x)}{f'(x)} = \lim_{x \rightarrow 0}\frac{f'\left( x^{2} \right).2x}{f'(x)} - 1 = 0 - 1 = - 1