Solveeit Logo

Question

Question: If ƒ(x) is continuous for all real values of x, then ![](https://cdn.pureessence.tech/canvas_268.png...

If ƒ(x) is continuous for all real values of x, then (r – 1 + x) dx is equal to –

A

dx

B

dx

C

ndx

D

(n – 1) dx

Answer

dx

Explanation

Solution

(r – 1 + x) dx

= 01f\int _ { 0 } ^ { 1 } f (x) dx + 01f\int _ { 0 } ^ { 1 } f (1 + x) dx + 01f\int _ { 0 } ^ { 1 } f (2 + x) dx

+ …. + 01f\int _ { 0 } ^ { 1 } f (n – 1 + x) dx

= 01f\int _ { 0 } ^ { 1 } f (x) dx + 12f\int _ { 1 } ^ { 2 } f (x) dx + 23f\int _ { 2 } ^ { 3 } f (x) dx + …. + (x) dx + ….. + n1nf\int _ { n - 1 } ^ { n } f (x) dx.

= (x) dx.

Hence (1) is the correct answer.