Question
Question: If (x) is continuous and increasing function such that the domain of g(x) = \(\lim_{x \rightarrow 2...
If (x) is continuous and increasing function such that the domain of g(x) = limx→2f(x) be R and h (x) = limx→π/2cotx−cosxacotx−acosx= then the domain of φ(x) =logais –
A
R
B
{0, 1}
C
R – {0, 1}
D
R+ – {1}
Answer
R – {0, 1}
Explanation
Solution
h(x) = 1−x1 , x ≠ 1 ⇒ h (h(x)) = xx−1 , x ≠ 0, 1
∴ h(h(h(x))) = x, x ≠ 0, 1
Also, g(x) ≥ 0 ∀ x ∈ R ⇒ f(x) ≥ x ⇒ f(f(x)) ≥ f(x) ≥ x
[Q f(x) is increasing]
⇒ f(f(f(x))) ≥ f(x) ≥ x ⇒ f(f(f(x))) – x ≥ 0
∀ x ∈ R – {0, 1}
Q φ(x) is defined for all x ∈ R – {0, 1}.