Solveeit Logo

Question

Question: If ƒ(x) is continuous and increasing function such that the domain of g(x) = \(\lim_{x \rightarrow 2...

If ƒ(x) is continuous and increasing function such that the domain of g(x) = limx2f(x)\lim_{x \rightarrow 2}f(x) be R and h (x) = limxπ/2acotxacosxcotxcosx=\lim_{x \rightarrow \pi/2}\frac{a^{\cot x} - a^{\cos x}}{\cot x - \cos x} = then the domain of φ(x) =loga\log ais –

A

R

B

{0, 1}

C

R – {0, 1}

D

R+ – {1}

Answer

R – {0, 1}

Explanation

Solution

h(x) = 11x\frac { 1 } { 1 - x } , x ≠ 1 ⇒ h (h(x)) = x1x\frac { x - 1 } { x } , x ≠ 0, 1

∴ h(h(h(x))) = x, x ≠ 0, 1

Also, g(x) ≥ 0 ∀ x ∈ R ⇒ f(x) ≥ x ⇒ f(f(x)) ≥ f(x) ≥ x

[Q f(x) is increasing]

⇒ f(f(f(x))) ≥ f(x) ≥ x ⇒ f(f(f(x))) – x ≥ 0

∀ x ∈ R – {0, 1}

Q φ(x) is defined for all x ∈ R – {0, 1}.