Solveeit Logo

Question

Mathematics Question on Trigonometry

If xx is a real number such that tanx+cotx=2tanx+cotx=2,then x=x=?

A

(n+14)π,nZ (n+\dfrac{1}{4})π,n∈Z

B

(n+1)π,nZ(n+1)π,n∈Z

C

(n+12)π,nZ (n+\dfrac{1}{2})π,n∈Z

D

nπ,nZnπ,n∈Z

E

23nπ,nZ \dfrac{2}{3}nπ,n∈Z

Answer

(n+14)π,nZ (n+\dfrac{1}{4})π,n∈Z

Explanation

Solution

_Give that _

Here , x is the real number

tanx+cotx=2tanx+cotx=2

tanx$$+\dfrac{1}{tanx}=2

(tanx)2+1tan(x)=2\dfrac{(tanx)^{2}+1}{tan(x)}=2

(tanx)22tanx+1=0(tanx)^{2}-2tanx+1=0

(tanx1)2=0(tanx-1)^{2}=0

tanx=±1tanx=±1

x=tan1(1)x=\tan^{-1} (1)

x=π4or=33π4x=\dfrac{\pi}{4}\\\\\text or \\\\\text = 3\dfrac{3\pi}{4}

Hence ,the correct option is (n+14)π,nZ(n+\dfrac{1}{4})π,n∈Z (Ans..)