Solveeit Logo

Question

Quantitative Aptitude Question on Basics of Numbers

If xx is a positive real number such that x8+(1x)8=47x^8+\bigg(\frac{1}{x}\bigg)^8=47 , then the value of x9+(1x)9x^9+\bigg(\frac{1}{x}\bigg)^9 is

A

34534\sqrt 5

B

40540\sqrt5

C

36536\sqrt5

D

30530\sqrt5

Answer

34534\sqrt 5

Explanation

Solution

Given :
x8+(18)8=47x^8+(\frac{1}{8})^8=47, this can be also expressed as :

(x4)2+(1x4)2=47(x^4)^2+(\frac{1}{x^4})^2=47

(x4+1x4)22×x4×1x4=47(x^4+\frac{1}{x^4})^2-2\times x^4\times\frac{1}{x^4}=47

(x4+1x4)2=49(x^4+\frac{1}{x^4})^2=49

x4+1x4=7x^4+\frac{1}{x^4}=7 …… (i)

Now , the above equation (i) can be expressed as :
(x2)2+(1x2)2=7(x^2)^2+(\frac{1}{x^2})^2=7

(x2+1x2)2×x2×1x2=7(x^2+\frac{1}{x^2})-2\times x^2\times \frac{1}{x^2}=7

(x2+1x2)2=9(x^2+\frac{1}{x^2})^2=9 i.e x2+1x2=3x^2+\frac{1}{x^2}=3

Similarly , we get :
x+1x=5x+\frac{1}{x}=\sqrt5
x3+1x3=(x+1x)33×x×1x(x+1x)x^3+\frac{1}{x^3}=(x+\frac{1}{x})^3-3\times x\times \frac{1}{x}(x+\frac{1}{x})
x3+1x3=(5)335=25x^3+\frac{1}{x^3}=(\sqrt5)^3-3\sqrt5=2\sqrt5

Similarly like the above, we can say that :
x9+1x9=(x3+1x3)33×x×1x3(x3+1x3)x^9+\frac{1}{x^9}=(x^3+\frac{1}{x^3})^3-3\times x \times \frac{1}{x^3}(x^3+\frac{1}{x^3})

x9+1x9=(25)33(25)x^9+\frac{1}{x^9}=(2\sqrt5)^3-3(2\sqrt5)

x9+1x9=40565x^9+\frac{1}{x^9}=40\sqrt5-6\sqrt5
=345=34\sqrt5
Therefore, the correct option is (A) : 34534\sqrt5.