Solveeit Logo

Question

Question: If ƒ(x) is a function satisfying ƒ(x + y) = ƒ(x) ƒ(y) for all x, y Î N such that ƒ(1) = 3 and \(\su...

If ƒ(x) is a function satisfying ƒ(x + y) = ƒ(x) ƒ(y) for all x, y Î N such that ƒ(1) = 3 and x=1nf(x)\sum _ { \mathrm { x } = 1 } ^ { \mathrm { n } } f ( \mathrm { x } ) = 120. Then the value of n is –

A

4

B

5

C

6

D

None of these

Answer

4

Explanation

Solution

Given, ƒ(x + y) = ƒ(x) ƒ(y) for all x, y Î N

\ for any x Î N, ƒ(x) = [ƒ(1)]x = 3x [Q ƒ(1) = 3]

Since = 120

̃ = 120

̃ 31 + 32 + 33 + …..+ 3n = 120

̃ 3n – 1 = 80

̃ 3n = 81 = 34 ̃ n = 4.