Solveeit Logo

Question

Question: If X has binomial distribution with mean np and variance npq, then ![](https://cdn.pureessence.tech/...

If X has binomial distribution with mean np and variance npq, then is

A

nkk1pq\frac { \mathrm { n } - \mathrm { k } } { \mathrm { k } - 1 } \cdot \frac { \mathrm { p } } { \mathrm { q } }

B

C

n+1kqp\frac { \mathrm { n } + 1 } { \mathrm { k } } \cdot \frac { \mathrm { q } } { \mathrm { p } }

D

n1k+1qp\frac { \mathrm { n } - 1 } { \mathrm { k } + 1 } \cdot \frac { \mathrm { q } } { \mathrm { p } }

Answer

Explanation

Solution

Here mean = np and variance= npq

P(X=k)P(X=k1)=nCk(p)k(q)nknCk1(p)k1(q)nk+1=nCknCk1pq\frac { P ( X = k ) } { P ( X = k - 1 ) } = \frac { { } ^ { n } C _ { k } ( p ) ^ { k } ( q ) ^ { n - k } } { { } ^ { n } C _ { k - 1 } ( p ) ^ { k - 1 } ( q ) ^ { n - k + 1 } } = \frac { { } ^ { n } C _ { k } } { { } ^ { n } C _ { k - 1 } } \cdot \frac { p } { q }

P(X=k)P(X=k1)=nk+1kpq\frac { \mathrm { P } ( \mathrm { X } = \mathrm { k } ) } { \mathrm { P } ( \mathrm { X } = \mathrm { k } - 1 ) } = \frac { \mathrm { n } - \mathrm { k } + 1 } { \mathrm { k } } \cdot \frac { \mathrm { p } } { \mathrm { q } }