Solveeit Logo

Question

Mathematics Question on Probability

If ?X? has a binomial distribution with parameters n = 6, p and P(X = 2) = 12, P(X = 3) = 5 then P =

A

12\frac{1}{2}

B

521\frac{5}{21}

C

516\frac{5}{16}

D

15\frac{1}{5}

Answer

521\frac{5}{21}

Explanation

Solution

n=6n=6
P(x=r)=nCrqnrprP\left(x=r\right)=^{n} C_{r} q^{n-r} p^{r}
P(x=2)=12P\left(x=2\right)=12
6C2q4p2=12(1)^{6}C_{2}q^{4}p^{2}=12\quad\dots\left(1\right)
P(x=3)=5P\left(x=3\right)=5
6C3q3p3=5(2)^{6}C_{3} q^{3}p^{3}=5 \quad\dots\left(2\right)
(1)(2)6C2q4p26C3q3p3=125\frac{\left(1\right)}{\left(2\right)}\Rightarrow\, \frac{^{6}C_{2}q^{4}p^{2}}{^{6}C_{3}q^{3}p^{3}}=\frac{12}{5}
15q20p=125\frac{15q}{20p}=\frac{12}{5}
75q=240P75 q=240 P
75(1p)=240p75\left(1-p\right)=240p
7575p=240p75-75p=240p
75=315P75=315 P
p=75315=521p=\frac{75}{315}=\frac{5}{21}