Solveeit Logo

Question

Question: If ƒ(x) = \(\frac{x}{\sin x}\) and g(x) = \(\frac{x}{\tan x}\), where 0 \< x £ 1, then in this inte...

If ƒ(x) = xsinx\frac{x}{\sin x} and g(x) = xtanx\frac{x}{\tan x}, where 0 < x £ 1,

then in this interval –

A

ƒ(x) and g(x) are increasing functions

B

Both ƒ(x) and g(x) are decreasing functions

C

ƒ(x) is an increasing function

D

g(x) is an increasing function

Answer

ƒ(x) is an increasing function

Explanation

Solution

Let ƒ(x) = xsinx\frac{x}{\sin x} Ž ƒ¢(x) = sinxxcosxsin2x\frac{\sin x - x\cos x}{\sin^{2}x}

Let u(x) = sin x – x cos x so u¢(x) = cos x – cos x + x sin x = x sin x > 0 for 0 < x £ 1. Hence u is an increasing so u(x) > u(0) = 0. Thus ƒ¢(x) > 0 for 0 < x £ 1. i.e. ƒ is an increasing function. Now

g¢(x) = tanxxsec2xtan2x\frac{\tan x - x\sec^{2}x}{\tan^{2}x}. Let v(x) = tan x – x sec2x.

Since v¢(x) = sec2x

– sec2x – 2x sec2 x tan x = – 2x sec2 x tan x < 0 for 0 < x £ 1. Hence v(x) < v(0) = 0 so g¢(x)< 0 for 0 < x £ 1. Thus g is a decreasing function.