Solveeit Logo

Question

Question: If ƒ(x) = \(\frac{x^{2}}{1 + x^{2}}\) and g(x) = sin x, then \(\int_{}^{}{(ƒog)}\) (x) cos (x) dx=...

If ƒ(x) = x21+x2\frac{x^{2}}{1 + x^{2}} and g(x) = sin x, then (ƒog)\int_{}^{}{(ƒog)} (x) cos (x) dx=

A

sin x – tan–1 (sin x) + c

B

cos x – tan–1 (sin x) + c

C

cos x + tan–1 (sin x) + c

D

sin x – tan–1 (cos x) + c

Answer

sin x – tan–1 (sin x) + c

Explanation

Solution

I =(ƒog)\int_{}^{}{(ƒog)} (x) cos (x) dx = (ƒ(g(x)))\int_{}^{}{(ƒ(g(x)))}cos x dx

= ƒ(sinx)\int_{}^{}{ƒ(\sin x)} cos x dx = sin2x1+sin2x\int_{}^{}\frac{\sin^{2}x}{1 + \sin^{2}x}cos x dx.

= t21+t2dt\int_{}^{}{\frac{t^{2}}{1 + t^{2}}dt} (where sin x = t Ž cos x dx = dt)

= 1\int_{}^{}111+t2\frac{1}{1 + t^{2}} dt = t – tan–1 t + c

= sin t – tan–1 (sin t) + c.