Question
Question: If (x) = \(\frac{x^{2}}{1 + x^{2}}\) and g(x) = sin x, then \(\int_{}^{}{(ƒog)}\) (x) cos (x) dx=...
If (x) = 1+x2x2 and g(x) = sin x, then ∫(ƒog) (x) cos (x) dx=
A
sin x – tan–1 (sin x) + c
B
cos x – tan–1 (sin x) + c
C
cos x + tan–1 (sin x) + c
D
sin x – tan–1 (cos x) + c
Answer
sin x – tan–1 (sin x) + c
Explanation
Solution
I =∫(ƒog) (x) cos (x) dx = ∫(ƒ(g(x)))cos x dx
= ∫ƒ(sinx) cos x dx = ∫1+sin2xsin2xcos x dx.
= ∫1+t2t2dt (where sin x = t Ž cos x dx = dt)
= ∫1– 1+t21 dt = t – tan–1 t + c
= sin t – tan–1 (sin t) + c.