Solveeit Logo

Question

Question: If ƒ(x) = \(\frac{x + 2}{2x + 3}\).Then \(\int_{}^{}\left( \frac{ƒ(x)}{x^{2}} \right)^{1/2}\)dx is e...

If ƒ(x) = x+22x+3\frac{x + 2}{2x + 3}.Then (ƒ(x)x2)1/2\int_{}^{}\left( \frac{ƒ(x)}{x^{2}} \right)^{1/2}dx is equal to

12\frac { 1 } { \sqrt { 2 } } (1+2ƒ(x)12ƒ(x))\left( \frac{1 + \sqrt{2ƒ(x)}}{1 - \sqrt{2ƒ(x)}} \right)23\sqrt{\frac{2}{3}}h(3ƒ(x)+23ƒ(x)2)\left( \frac{\sqrt{3ƒ(x)} + \sqrt{2}}{\sqrt{3ƒ(x) - \sqrt{2}}} \right)+ c where –

A

g(x) = tan–1 x, h(x) = log |x|

B

g(x) = log |x|, h(x) = tan–1 x

C

g(x) = h(x) = tan–1 x

D

g(x) = log |x|, h (x) = log |x|

Answer

g(x) = log |x|, h (x) = log |x|

Explanation

Solution

Putting y2 = ƒ(x) = x+22x+3\frac{x + 2}{2x + 3}, we have

x = 3y2212y2\frac { 3 y ^ { 2 } - 2 } { 1 - 2 y ^ { 2 } } and dx = – 2y(12y2)2\frac{2y}{(1–2y^{2})^{2}}dy

\dxx\frac{dx}{x}= –y2y(12y2)2\int_{}^{}y\frac{2y}{(1 - 2y^{2})^{2}}. 12y23y22\frac{1 - 2y^{2}}{3y^{2} - 2}dy

= 2 y2(2y21)(3y22)\int_{}^{}\frac{y^{2}}{(2y^{2} - 1)(3y^{2} - 2)}dy

= –2 [12y2123y22]\int_{}^{}\left\lbrack \frac{1}{2y^{2} - 1} - \frac{2}{3y^{2} - 2} \right\rbrackdy

= 12\frac { 1 } { \sqrt { 2 } } log 1+2y12y\left| \frac{1 + \sqrt{2}y}{1 - \sqrt{2}y} \right|23\sqrt{\frac{2}{3}}log 3y+23y2\left| \frac{\sqrt{3}y + \sqrt{2}}{\sqrt{3}y - \sqrt{2}} \right|+ c

Thus g(x) = log |x| and h (x) = log |x|