Solveeit Logo

Question

Question: If \(x = \frac{\sqrt{5} + \sqrt{2}}{\sqrt{5} - \sqrt{2}},y = \frac{\sqrt{5} - \sqrt{2}}{\sqrt{5} + \...

If x=5+252,y=525+2,x = \frac{\sqrt{5} + \sqrt{2}}{\sqrt{5} - \sqrt{2}},y = \frac{\sqrt{5} - \sqrt{2}}{\sqrt{5} + \sqrt{2}}, then 3x2+4xy3y2=3x^{2} + 4xy - 3y^{2} =

A

13[561012]\frac{1}{3}\lbrack 56\sqrt{10} - 12\rbrack

B

13[5610+12]\frac{1}{3}\lbrack 56\sqrt{10} + 12\rbrack

C

13[56+1210]\frac{1}{3}\lbrack 56 + 12\sqrt{10}\rbrack

D

None of these

Answer

13[5610+12]\frac{1}{3}\lbrack 56\sqrt{10} + 12\rbrack

Explanation

Solution

y=1xy = \frac{1}{x} \Rightarrow xy=1xy = 1

\therefore 3x2+4xy3y2=3(xy)(x+y+4)3x^{2} + 4xy - 3y^{2} = 3(x - y)(x + y + 4)

=3.(5+252525+2)(5+252+525+2)+4= 3.\left( \frac{\sqrt{5} + \sqrt{2}}{\sqrt{5} - \sqrt{2}} - \frac{\sqrt{5} - \sqrt{2}}{\sqrt{5} + \sqrt{2}} \right)\left( \frac{\sqrt{5} + \sqrt{2}}{\sqrt{5} - \sqrt{2}} + \frac{\sqrt{5} - \sqrt{2}}{\sqrt{5} + \sqrt{2}} \right) + 4

=3[(5+2)2(52)2](52)(52)[(5+2)2+(52)2]+4= \frac{3\lbrack(\sqrt{5} + \sqrt{2})^{2} - (\sqrt{5} - \sqrt{2})^{2}\rbrack}{(5 - 2)(5 - 2)}\lbrack(\sqrt{5} + \sqrt{2})^{2} + (\sqrt{5} - \sqrt{2})^{2}\rbrack + 4

=13.410.2(5+2)+4=56310+4=13(5610+12)= \frac{1}{3}.4\sqrt{10}.2(5 + 2) + 4 = \frac{56}{3}\sqrt{10} + 4 = \frac{1}{3}(56\sqrt{10} + 12).