Solveeit Logo

Question

Question: If $x = \frac{sec \frac{x}{2} \cdot sec \frac{x}{4} \cdot sec \frac{x}{8} \cdots}{cosec x}$, then $\...

If x=secx2secx4secx8cosecxx = \frac{sec \frac{x}{2} \cdot sec \frac{x}{4} \cdot sec \frac{x}{8} \cdots}{cosec x}, then 122sec2x2+124sec2x4+126sec2x8+=\frac{1}{2^2}sec^2\frac{x}{2} + \frac{1}{2^4}sec^2\frac{x}{4} + \frac{1}{2^6}sec^2\frac{x}{8} + \cdots =

A

x2(1+1sin2xsin2x)1x2\frac{x^2(1+\frac{1-sin^2x}{sin^2x})-1}{x^2}

B

(1+tan2x1cos2x)x2(\frac{1+tan^2x}{1-cos^2x})\cdot x^2

C

tan2x12+13sec2xtan^2x - \frac{1}{2+13sec^2x}

D

(1+sin2x1+sec2x)x1+x(\frac{1+sin^2x}{1+sec^2x})\frac{x}{1+x}

Answer

x2(1+1sin2xsin2x)1x2\frac{x^2(1+\frac{1-sin^2x}{sin^2x})-1}{x^2}

Explanation

Solution

The given equation is x=secx2secx4secx8cosecxx = \frac{\sec \frac{x}{2} \cdot \sec \frac{x}{4} \cdot \sec \frac{x}{8} \cdots}{\cosec x}.

We can write this as x=(n=1secx2n)sinxx = \left( \prod_{n=1}^{\infty} \sec \frac{x}{2^n} \right) \sin x. Using the identity secθ=1cosθ\sec \theta = \frac{1}{\cos \theta}, we have n=1secx2n=1n=1cosx2n\prod_{n=1}^{\infty} \sec \frac{x}{2^n} = \frac{1}{\prod_{n=1}^{\infty} \cos \frac{x}{2^n}}. We know the infinite product formula n=1cosx2n=sinxx\prod_{n=1}^{\infty} \cos \frac{x}{2^n} = \frac{\sin x}{x} for x0x \neq 0. Substituting this into the expression for xx: x=(1sinxx)sinx=xsinxsinx=xx = \left( \frac{1}{\frac{\sin x}{x}} \right) \sin x = \frac{x}{\sin x} \cdot \sin x = x. This confirms that the given equation is an identity for x0x \neq 0.

We need to find the value of the series S=122sec2x2+124sec2x4+126sec2x8+=n=114nsec2x2nS = \frac{1}{2^2}\sec^2\frac{x}{2} + \frac{1}{2^4}\sec^2\frac{x}{4} + \frac{1}{2^6}\sec^2\frac{x}{8} + \cdots = \sum_{n=1}^{\infty} \frac{1}{4^n} \sec^2 \frac{x}{2^n}.

Consider the identity n=1cosx2n=sinxx\prod_{n=1}^{\infty} \cos \frac{x}{2^n} = \frac{\sin x}{x}. Taking the natural logarithm of both sides, we get: ln(n=1cosx2n)=ln(sinxx)\ln \left( \prod_{n=1}^{\infty} \cos \frac{x}{2^n} \right) = \ln \left( \frac{\sin x}{x} \right) n=1ln(cosx2n)=ln(sinx)lnx\sum_{n=1}^{\infty} \ln \left( \cos \frac{x}{2^n} \right) = \ln (\sin x) - \ln x.

Differentiate both sides with respect to xx: ddx(n=1ln(cosx2n))=ddx(ln(sinx)lnx)\frac{d}{dx} \left( \sum_{n=1}^{\infty} \ln \left( \cos \frac{x}{2^n} \right) \right) = \frac{d}{dx} (\ln (\sin x) - \ln x) n=1ddx(ln(cosx2n))=cosxsinx1x\sum_{n=1}^{\infty} \frac{d}{dx} \left( \ln \left( \cos \frac{x}{2^n} \right) \right) = \frac{\cos x}{\sin x} - \frac{1}{x} n=11cosx2n(sinx2n)12n=cotx1x\sum_{n=1}^{\infty} \frac{1}{\cos \frac{x}{2^n}} \cdot \left( -\sin \frac{x}{2^n} \right) \cdot \frac{1}{2^n} = \cot x - \frac{1}{x} n=112ntanx2n=cotx1x\sum_{n=1}^{\infty} -\frac{1}{2^n} \tan \frac{x}{2^n} = \cot x - \frac{1}{x} n=112ntanx2n=1xcotx\sum_{n=1}^{\infty} \frac{1}{2^n} \tan \frac{x}{2^n} = \frac{1}{x} - \cot x.

Differentiate both sides again with respect to xx: ddx(n=112ntanx2n)=ddx(1xcotx)\frac{d}{dx} \left( \sum_{n=1}^{\infty} \frac{1}{2^n} \tan \frac{x}{2^n} \right) = \frac{d}{dx} \left( \frac{1}{x} - \cot x \right) n=1ddx(12ntanx2n)=1x2(cosec2x)\sum_{n=1}^{\infty} \frac{d}{dx} \left( \frac{1}{2^n} \tan \frac{x}{2^n} \right) = -\frac{1}{x^2} - (-\cosec^2 x) n=112nsec2x2n12n=cosec2x1x2\sum_{n=1}^{\infty} \frac{1}{2^n} \cdot \sec^2 \frac{x}{2^n} \cdot \frac{1}{2^n} = \cosec^2 x - \frac{1}{x^2} n=114nsec2x2n=cosec2x1x2\sum_{n=1}^{\infty} \frac{1}{4^n} \sec^2 \frac{x}{2^n} = \cosec^2 x - \frac{1}{x^2}.

The series we need to evaluate is S=n=114nsec2x2nS = \sum_{n=1}^{\infty} \frac{1}{4^n} \sec^2 \frac{x}{2^n}. So, S=cosec2x1x2S = \cosec^2 x - \frac{1}{x^2}.

Now let's check the options. Option A: x2(1+1sin2xsin2x)1x2=x2(1+cos2xsin2x)1x2=x2(1+cot2x)1x2=x2cosec2x1x2=cosec2x1x2\frac{x^2(1+\frac{1-\sin^2x}{\sin^2x})-1}{x^2} = \frac{x^2(1+\frac{\cos^2x}{\sin^2x})-1}{x^2} = \frac{x^2(1+\cot^2x)-1}{x^2} = \frac{x^2\cosec^2x - 1}{x^2} = \cosec^2x - \frac{1}{x^2}. This matches our result.

The final answer is cosec2x1x2\cosec^2 x - \frac{1}{x^2}. Let's check if this is equivalent to Option A. Option A is x2(1+1sin2xsin2x)1x2\frac{x^2(1+\frac{1-\sin^2x}{\sin^2x})-1}{x^2}. We have 1sin2x=cos2x1 - \sin^2 x = \cos^2 x. So, 1+1sin2xsin2x=1+cos2xsin2x=1+cot2x=cosec2x1 + \frac{1-\sin^2 x}{\sin^2 x} = 1 + \frac{\cos^2 x}{\sin^2 x} = 1 + \cot^2 x = \cosec^2 x. Substituting this into Option A: x2(cosec2x)1x2=x2cosec2xx21x2=cosec2x1x2\frac{x^2(\cosec^2 x)-1}{x^2} = \frac{x^2 \cosec^2 x}{x^2} - \frac{1}{x^2} = \cosec^2 x - \frac{1}{x^2}. So, Option A is indeed equal to the value of the series.