Solveeit Logo

Question

Question: If \(x = \frac{\pi}{4},\frac{\pi}{2},\frac{3\pi}{4},\frac{5\pi}{6},\frac{5\pi}{4},\frac{7\pi}{6},\fr...

If x=π4,π2,3π4,5π6,5π4,7π6,7π4,9π6,11π6x = \frac{\pi}{4},\frac{\pi}{2},\frac{3\pi}{4},\frac{5\pi}{6},\frac{5\pi}{4},\frac{7\pi}{6},\frac{7\pi}{4},\frac{9\pi}{6},\frac{11\pi}{6}then x =

A

sin4x+cos4x+sin2x+α=0\sin^{4}x + \cos^{4}x + \sin 2x + \alpha = 0

B

(sin2x+cos2x)22sin2xcos2x+sin2x+α=0(\sin^{2}x + \cos^{2}x)^{2} - 2\sin^{2}x\cos^{2}x + \sin 2x + \alpha = 0

C

sin22x2sin2x22α=0\sin^{2}2x - 2\sin 2x - 2 - 2\alpha = 0

D

None of these

Answer

sin4x+cos4x+sin2x+α=0\sin^{4}x + \cos^{4}x + \sin 2x + \alpha = 0

Explanation

Solution

The given equation can be put in the form

3θ=nπ+π33\theta = n\pi + \frac{\pi}{3}

θ=(3n+1)π91cosθ=sinθ.sinθ2\theta = (3n + 1)\frac{\pi}{9}1 - \cos\theta = \sin\theta.\sin\frac{\theta}{2}

2sin2θ2=2sinθ2.cosθ2.sinθ22\sin^{2}\frac{\theta}{2} = 2\sin\frac{\theta}{2}.\cos\frac{\theta}{2}.\sin\frac{\theta}{2} sin2x[5sin2x2]=0\sin ^ { 2 } x \left[ 5 \sin ^ { 2 } x - 2 \right] = 0 sinθ2=02sin2θ4=0\sin\frac{\theta}{2} = 02\sin^{2}\frac{\theta}{4} = 0or sinθ2\sin\frac{\theta}{2}.

Hence sinθ4=0\sin\frac{\theta}{4} = 0 is the required answer.