Solveeit Logo

Question

Question: If x + \(\frac{1}{x}\)= 5, then \(\left( x^{3} + \frac{1}{x^{3}} \right)\)– 5 \(\left( x^{2} + \frac...

If x + 1x\frac{1}{x}= 5, then (x3+1x3)\left( x^{3} + \frac{1}{x^{3}} \right)– 5 (x2+1x2)\left( x^{2} + \frac{1}{x^{2}} \right)+ (x+1x)\left( x + \frac{1}{x} \right)is equal to

A

0

B

5

C

–5

D

10

Answer

0

Explanation

Solution

= (x+1x)3\left( x + \frac{1}{x} \right)^{3}– 3 (x+1x)\left( x + \frac{1}{x} \right)– 5[(x+1x)22]\left\lbrack \left( x + \frac{1}{x} \right)^{2} - 2 \right\rbrack+ (x+1x)\left( x + \frac{1}{x} \right)

= (x+1x)3\left( x + \frac{1}{x} \right)^{3}– 5 (x+1x)2\left( x + \frac{1}{x} \right)^{2}– 2 (x+1x)\left( x + \frac{1}{x} \right)+ 10

= 125 – 125 – 2 × 5 + 10 = 0