Solveeit Logo

Question

Question: If x + \(\frac{1}{x}\)= 1 and p = x<sup>4000</sup> + \(\frac{1}{x^{4000}}\)and q be the digit at uni...

If x + 1x\frac{1}{x}= 1 and p = x4000 + 1x4000\frac{1}{x^{4000}}and q be the digit at unit place in the number 22n2^{2^{n}}+ 1, nĪN& n > 1, then p + q =

A

8

B

6

C

7

D

None of these

Answer

6

Explanation

Solution

x + 1x\frac{1}{x}= 1 Ž x2 – x + 1 = 0

Ž x = 1±3i2\frac{1 \pm \sqrt{3}i}{2}Ž x = –w, –w2

Ž Now, p = w1000 + 1ω1000\frac{1}{\omega^{1000}}

= (w3) 333. w + 1(ω3)333.ω\frac{1}{(\omega^{3})^{333}.\omega}

= w + 1ω\frac{1}{\omega}= w + w2 = –1

Similarly, for x = w2, also p = –1

For n > 1, 2n = 4k, k Ī N

\ 22n2^{2^{n}}= 24k = (16)k = a number with last digit = 6

\ q = (the digit at unit place in 22n2^{2^{n}}) + 1 = 6 + 1 = 7

\ p + q = 7 + (–1) = 6